Metal feature set tables

Developer

This table lists each current Apple GPU family, its processors, and how each family relates to older feature sets.

Apple GPUs
Apple GPU family’ GPUs in family Corresponding feature sets
iOS GPU Family 2
SREES A8 tvOS GPU Family 1
i0OS GPU Family 3
SR AR ALY tvOS GPU Family 2
Appled A11 iOS GPU Family 4
Apple5 A12 iOS GPU Family 5
Apple6 A13 —
A14
AL M1, M1 Pro, M1 Max, M1 Ultra -
A15
SRBICE M2, M2 Pro, M2 Max -

1. See MTLGPUFamily for each GPU family's enumeration constant.

When an Apple GPU is installed in a Mac device (Apple Silicon Mac), the device also reports support for the mac2 GPU
family; these devices support the union of both feature families.

May 26, 2023 Page 10f 15 Copyright © 2023 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtlgpufamily
https://developer.apple.com/documentation/metal/mtlgpufamily/mac2

This table lists each current Metal 3 GPU family and the processors in that family.

Metal 3 GPUs
Metal GPU family’ Platform GPUs in family
i0S A14, A15, A16
. A14, A15, A16
iPadOS M1
M1, M1 Pro, M1 Max, M1 Ultra
Metal3 M2, M2 Pro, M2 Max
AMD Vega
macOsS AMD 5000-series, 6000-series
Intel UHD Graphics 630
Intel Iris Plus Graphics

1. See MTLGPUFamily for each GPU family’s enumeration constant.

May 26, 2023 Page 2 of 15 Copyright © 2023 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtlgpufamily

Metal feature availability by GPU family

GPU family’| Commonl Common2 Common3 Metal3 Apple2 Apple3 Apple4 Apple5 Appleéb Apple?7 AppleS8 Mac2
Feature Available in family

MetalKit v v v v v v v v v v v v
Metal Performance Shaders v v v v v v v v v v v
Programmable blending v v v v v v v

PVRTC pixel formats v v v v v v v

EAC/ETC pixel formats v v v v v v v

ASTC pixel formats v v v v v v v

BC pixel formats® Varies Varies Varies v
Compressed volume texture formats v v v v v v v v v v
Extended range pixel formats v v v v v v

Wide color pixel format v v v v v v v v v v v v
Depth-16 pixel format v v v v v v v v v v v v
Linear textures v v v v v v v v v v v v
MSAA depth resolve v v v v v v v v v
Array of textures (read) v v v v v v v v v v
Array of textures (write) v v v v v v v
Cube map texture arrays v v v v v v v v v
Stencil texture views v v v v v v v v v v v v
Array of samplers v v v v v v v v v v
Sampler max anisotropy v v v v v v v v v v v v
Sampler LOD clamp v v v v v v v v v v v v
If\:lj':"l‘.jiirslerState support for comparison v v v v v v v v v v
16-bit unsigned integer coordinates v v v v v v v v v v v v
Border color v v v v
Counting occlusion query v v v v v v v v v v
Base vertex/instance drawing v v v v v v v v v v
Layered rendering v v v v v v v
Layered rendering to multisample textures v v v v v
Memoryless render targets v v v v v v v

Dual-source blending v v v v v v v v v v v v
Combined MSAA store and resolve action v v v v v v v v v v
MSAA blits v v v v v v v v v v v v
Programmable sample positions v v v v v v v v v v v v
Deferred store action v v v v v v v v v v v v
Texture barriers v
Memory barriers 2 v v v v v v v v
Tessellation v v v v v v v v v v

May 26, 2023 Page 3 of 15 Copyright © 2023 Apple Inc. All Rights Reserved.

GPU family’| Commonl Common2 Common3 Metal3 Apple2 Apple3 Apples Appleb5 Appleb Apple7 Apple8 Mac2
Indirect tessellation arguments v v v v v v
Tessellation in indirect command buffers v v v v v v
Resource heaps v v v v v v v v v v v v
Function specialization v v v v v v v v v v v v
Read/write buffers in functions v v v v v v v v v v
Read/write textures in functions v v v v v v v v
Extract, insert, and reverse bits v v v v v v v v v v v v
SIMD barrier v v v v v v v v v v v v
Indirect draw & dispatch arguments v v v v v v v v v v
Argument buffers tier Varies Varies Varies Tier 2 Tier1 Tier1 Tier1 Tier1 Tier 2 Tier 2 Tier 2 Tier 2
Indirect command buffers (rendering) v v v v v v v v v v
Indirect command buffers (compute) v v v v v v v v v v
Uniform type v v v v v v v v v v v v
Imageblocks v v v v v
Tile shaders v v v v v
Imageblock sample coverage control v v v v v
Post-depth coverage v v v v v
Quad-scoped permute operations v v v v v v v v
SIMD-scoped permute operations v v v v v
SIMD-scoped reduction operations v v v v
SIMD-scoped matrix multiply operations v v
Raster order groups3 v v v v v v v Varies
Non-uniform threadgroup size v v v v v v v v
Multiple viewports v v v v v v v
Device notifications v
Stencil feedback v v v v v v v
Stencil resolve v v v v v v v
Non-square tile dispatch v v v v
Texture swizzle v v v v v v v v v
Placement heap v v v v v v v v v
Primitive ID v v v v
Barycentric coordinates4 Varies v v Varies
Read/write cube map textures in functions v v v v v v v
Sparse textures v v v
Sparse depth and stencil textures v
Variable rasterization rate5 v v v Varies
Vertex amplification® v v v Varies
64-bit integer math v v v v v v v
Lossy texture compression v

May 26, 2023 Page 4 of 15 Copyright © 2023 Apple Inc. All Rights Reserved.

GPU family’| Commonl Common2 Common3 Metal3 Apple2 Apple3 Apples Appleb5 Appleb Apple7 Apple8 Mac2
SIMD shift and fill v
Render dynamic libraries v v v
Compute dynamic libraries v v v v v
Mesh shading v v v v
MetalFX spatial upscaling? Varies Varies Varies v
MetalFX temporal upscaling8 Varies Varies Varies
Fast resource loading v v v v v v v v v v v v
Ray tracing in compute pipelines° v v v v Varies
Ray tracing in render pipelines4 v v v
Floating point atomics v v v
Texture atomics v v v v v
64-bit atomics™ Varies
Query texture LOD12 Varies v
Binary archives v v v v v v v v v v
Function pointers in compute pipelines13 v v v v Varies
Function pointers in render pipelines4 v v v
Depth sample compare bias and gradient v v v v v v v
Non-private depth stencil textures v v v v v v v

See MTLGPUFamily for each GPU family’s enumeration constant.

—_

. The GPUs in Apple3 through Apple8 families only support memory barriers for compute command encoders, and for vertex-to-vertex and vertex-to-fragment stages of render command encoders.
. Some GPU devices in the Mac2 family support raster order groups. You can check an individual GPU'’s support for this feature by inspecting its MTLDevice.rasterOrderGroupsSupported property at runtime.

A w0 N

. Some GPU devices in the Mac2 and Metal3 families support barycentric coordinates. You can check an individual GPU's support for this feature by inspecting its MTLDevice.supportsShaderBarycentricCoordinates
property at runtime.

5. Some GPU devices in the Mac2 family support variable rasterization rates. You can check an individual GPU's support for this feature by calling its MTLDevice.supportsRasterizationRateMap(layerCount:) method at
runtime.

6. Some GPU devices in the Mac2 family support vertex amplification. You can check an individual GPU's support for this feature by calling its MTLDevice.supportsVertexAmplificationCount(_:) method at runtime.

7. Some GPU devices in the Metal3, Apple7, and Apple8 families support MetalFX spatial upscaling. You can check whether a GPU supports spatial upscaling by calling the MTLFXSpatialScalerDescriptor type's
supportsDevice(_:) method at runtime.

8. Some GPU devices in the Metal3, Apple7, and Apple8 families support MetalFX temporal upscaling. You can check whether a GPU supports temporal upscaling by calling the MTLFXTemporalScalerDescriptor type's
supportsDevice(_:) method at runtime.

9. Some GPU devices in the Apple7 and Apple8 families support BC texture compression on iPadOS. You can check whether a GPU supports BC texture compression by inspecting its MTLDevice.supportsBCTextureCompression
property at runtime.

10.Some GPU devices in the Mac?2 family support ray tracing in compute pipelines. You can check whether a GPU supports ray tracing in compute pipelines by inspecting its MTLDevice.supportsRaytracing property at runtime.

11.Some GPU devices in the Apple8 family support 64-bit atomic min and max using ulong, on both buffers and textures. You can check whether a GPU supports 64-bit atomics by verifying it supports both the Mac2 and Apple8
families.

12.5o0me GPU devices in the Apple7 family support query texture LOD. You can check whether a GPU supports query texture LOD by inspecting its MTLDevice.supportsQueryTexturel OD property at runtime.

13.Some GPU devices in the Mac2 family support function pointers in compute pipelines. You can check whether a GPU supports function pointers in compute pipelines by inspecting its MTLDevice.supportsFunctionPointers
property at runtime.

14.Support for function pointers and ray tracing in render pipelines is not compatible with mesh shading; you can only use AIR linking through MTLLinkedFunctions.privateFunctions inrender pipelines using mesh shading.

May 26, 2023 Page 5 of 15 Copyright © 2023 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtlgpufamily
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/2887285-rasterordergroupssupported
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3325837-supportsshaderbarycentriccoordin
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3131682-supportsrasterizationratemap
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3197984-supportsvertexamplificationcount
https://developer.apple.com/documentation/metalfx/mtlfxspatialscalerdescriptor?language=objc
https://developer.apple.com/documentation/metalfx/mtlfxspatialscalerdescriptor/4057317-supportsdevice?language=objc
https://developer.apple.com/documentation/metalfx/mtlfxtemporalscalerdescriptor?language=objc
https://developer.apple.com/documentation/metalfx/mtlfxtemporalscalerdescriptor/4057318-supportsdevice?language=objc
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3566547-supportsbctexturecompression
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3580382-supportsraytracing
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3566548-supportsquerytexturelod
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3589487-supportsfunctionpointers
https://developer.apple.com/documentation/metal/mtllinkedfunctions/
https://developer.apple.com/documentation/metal/mtllinkedfunctions/3750551-privatefunctions

GPU implementation limits by family

GPU family’| Apple2 Apple3 Apples Apple5 Apple6 Apple?7 Apple8 Mac2
Function arguments Function arguments

Maximum number of vertex attributes, per vertex 31 31 31 31 31 31 31 31
descriptor
Maximum numbgr of entries in the. buffer argument 31 31 31 31 31 31 31 31
table, per graphics or kernel function
Maximum numbgr of entries in the. texture argument 31 31 96 96 128 128 128 128
table, per graphics or kernel function
Maximum number of entrlt?s in the sampler s.tate 16 16 16 16 16 16 16 16
argument table, per graphics or kernel function2
Maximum number of entries in the thread.group 31 31 31 31 31 31 31 31
memory argument table, per kernel function
Maximum number pf constant buffer.arguments in 31 31 31 31 31 31 31 14
vertex, fragment, tile, or kernel function
Maximum length of constant buffer a.rguments in 4 KB 4 KB 4 KB 4 KB 4 KB 4 KB 4 KB 4 KB
vertex, fragment, tile, or kernel function
Maximum threads per threadgroup3 512 512 1024 1024 1024 1024 1024 1024
Maximum total threadgroup memory allocation 16352 B 16 KB 32 KB 32 KB 32 KB 32 KB 32 KB 32 KB
Maximum total tile memory allocation4 Not accessible Not accessible 32 KB 32 KB 32 KB 32 KB 32 KB Not accessible
Threadgroup memory length alignment 16 B 16 B 16 B 16 B 16 B 16 B 16 B 16 B
Maximum function memory allocation for a buffer in No limit No limit No limit No limit No limit No limit No limit No limit
the constant address space
Maximum scalars or vectors inputs to a fragment
function. (Declare with the [[stage_in]] qualifier4.) 60 60 2, (2, 2, (2, 2, &z
Maximum number of input components to a fragment
function. (Declare with the [[stage_in]1] qualifiers.) 20 20 e e e e e e
Maximum number of function constants 65536 65536 65536 65536 65536 65536 65536 65536
Maximum tessellation factor Not available 16 16 64 64 64 64 64
Maximum number of viewports and scissor 1 1 1 16 16 16 16 16

rectangles, per vertex function

May 26, 2023

Page 6 of 15

Copyright © 2023 Apple Inc. All Rights Reserved.

GPU family’| Apple2 Apple3 Apples4 Apple5 Appleéb Apple?7 Apple8 Mac2

Maximum numI?er of raster order groups, per Not available Not available 8 8 8 8 8 8
fragment function

Minimum alignment of vertex descriptor layout stride 1B 1B 1B 1B 1B 1B 1B 4B
Maximum size of vertex descriptor layout stride No limit No limit No limit No limit No limit No limit No limit 4 KB

Argument buffers® Argument buffers®

Maximum number of buffers you can access, per 31 31 96 96 Unlimited Unlimited Unlimited Unlimited
stage, from an argument buffer

Maximum number of textures you can access, per 31 31 96 96 1M 1M 1M 1M
stage, from an argument buffer

Maximum number of samplers you can access, per 16 16 16 16 1024 1024 1024 1024
stage, from an argument buffer

Resources Resources

Minimum constant buffer offset alignment 4B 4B 4B 4B 4B 4B 4B 32B
Maximum 1D texture width 8192 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px
Maximum 2D texture width and height 8192 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px
Maximum cube map texture width and height 8192 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px
Maximum 3D texture width, height, and depth 2048 px 2048 px 2048 px 2048 px 2048 px 2048 px 2048 px 2048 px
Maximum texture buffer width? 64M px 256M px 256M px 256M px 256M px 256M px 256M px 256M px
Maximum number of layers per 1D texture array, 2D 2048 2048 2048 2048 2048 2048 2048 2048
texture array, or 3D texture

E:H:: alignment for copying an existing texture to a 64 B 16 B 16 B 16 B 16 B 16 B 16 B 256 B
Maximum counter sample buffer length 32 KB 32 KB 32 KB 32 KB 32 KB 32 KB 32 KB No limit
Maximum number of sample buffers 32 32 32 32 32 32 32 No limit
May 26, 2023 Page 7 of 15 Copyright © 2023 Apple Inc. All Rights Reserved.

GPU family’| Apple2 Apple3 Apples4 Apple5 Appleéb Apple?7 Apple8 Mac2

Render targets Render targets
;A:sx;nc::; Elt;ml:er of color render targets per render 3 8 8 8 8 8 8 8
Maximum size of a point primitive 511 511 511 511 511 511 511 511
l"l"sa;zg"n‘:mttig::'cr;';‘:f;rt:l'getﬁggsper pixel, when 256 bits 256 bits 512 bits 512 bits 512 bits 512 bits 512 bits No limit
Maximum visibility query offset 65528 B 65528 B 65528 B 65528 B 65528 B 256 KB 256 KB 256 KB

Feature limits Feature limits
Maximum number of fences 32768 32768 32768 32768 32768 32768 32768 32768
Maximum number of I/O commands per buffer 8192 8192 8192 8192 8192 8192 8192 8192
Maximum vertex count for vertex amplification Not available Not available Not available Not available 2 2 2 Varies
Maximum threadgroups per object shader grid ° Not available Not available Not available Not available Not available No limit No limit 1024
Maximum threadgroups per mesh shader grid ° Not available Not available Not available Not available Not available 1024 1024 1024
Maximum payload in mesh shader pipeline Not available ~ Not available Not available = Not available Not available 16384 B 8 16384 B 8 16384 B 8
Maximum levels in ray tracing intersector Not available Not available Not available Not available 32 32 32 32

May 26, 2023

Page 8 of 15

Copyright © 2023 Apple Inc. All Rights Reserved.

GPU family’| Apple2 Apple3 Apples4 Apple5 Appleéb Apple?7 Apple8 Mac2

Maximum levels in ray tracing intersection_query | Notavailable Not available Not available Not available 16 16 16 16

1. See MTLGPUFamily for each GPU family's enumeration constant.

2. Inline constexpr samplers that you declare in Metal Shading Language (MSL) code count against the limit. For example, for a feature set limit of 16, you can have 12 APl samplers and 4
language samplers (16 total), but you can't have 12 APl samplers and 6 language samplers (18 total).

3. The values in this row are the theoretical maximum number of threads per threadgroup. Check the actual maximum by inspecting the
MTLComputePipelineState.maxTotalThreadsPerThreadgroup property at runtime.

4. You can allocate memory between imageblock and threadgroup memory, but the sum of these allocations can't exceed the maximum total tile memory limit. Some feature sets can't
access tile memory directly, but they can access threadgroup memory.

5. A vector counts as n scalars, where n is the number of components in the vector. The iOS and tvOS feature sets only reach the maximum number of inputs if you don’t exceed the
maximum number of input components. For example, you can have 60 float inputs (components), but you can't have 60 float4 inputs, which total 240 components.

. The limits apply to the items you place both in the argument buffers you bind directly and in the argument buffers you can access indirectly through your bound argument buffers.
The maximum texture buffer width, in pixels, is also limited by MTLDevice.maxBufferlLength divided by the size of a pixel, in bytes; as well as available memory.

. When a mesh shader consumes [[threadgroups_per_grid]]or [[threads_per_grid]] the payload size available to the user is reduced by 16 bytes.

© 00 N O

. For GPU devices in the Apple7 and Apple8 families, the maximum amount of payload and mesh geometry data that can be exported per draw is 4 GB.

May 26, 2023 Page 9 of 15 Copyright © 2023 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtlgpufamily
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/documentation/metal/mtlcomputepipelinestate
https://developer.apple.com/documentation/metal/mtlcomputepipelinestate/1414927-maxtotalthreadsperthreadgroup
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/2966563-maxbufferlength

This table lists the GPU's texture capabilities for each pixel format:

- All: The GPU has all of the texture capabilities below for the pixel format.

- Filter: The GPU can filter a texture with the pixel format during sampling.

« Write: The GPU can write to a texture on a per-pixel basis with the pixel format.

- Color: The GPU can use a texture with the pixel format as a color render target.

- Blend: The GPU can blend a texture with the pixel format.

- MSAA: The GPU can use a texture with the pixel format as a destination for multisample antialias (MSAA) data.

- Sparse: The GPU supports sparse-texture allocations for textures with the pixel format.

- Resolve: The GPU can use a texture with the pixel format as a source for multisample antialias (MSAA) resolve operations.

Note
All graphics and compute kernels can read or sample a texture with any pixel format.

Texture capabilities by pixel format

GPU family? Apple2 Apple3 Apples Apple5 Appleé6 Apple7 Apple8 Mac2
Ordinary 8-bit pixel formats Texture capabilities for ordinary 8-bit pixel formats by GPU Family
A8Unorm2,9 Filter All All All All All All All
R8Unorm?2 All All All All All All All All
R8Unorm_sRGB All All All All All All All Not available
R8Snorm All All All All All All All All
. . . . Write Write Write .
ravine: bre goe fme e coo cda coor g
1 2
RES1nt MSAA MSAA MSAA MSAA Sas ST Sas MSAA
Sparse Sparse Sparse
Ordinary 16-bit pixel formats Texture capabilities for ordinary 16-bit pixel formats by GPU family
. . . . Filter Filter Filter
Fll’ger F|It_er F|It_er F|It_er Write Write Write
Write Write Write Write
R16Unorm Color Color Color Color e e e All
R16Snorm MSAA MSAA MSAA MSAA MSAA MSAA MSAA
Blend Blend Blend
Blend Blend Blend Blend
Sparse Sparse Sparse
. . . . Write Write Write .
rouin: ore gee gme e coo cda Coor U
R16Sint? MSAA MSAA MSAA MSAA MRS MR MRS MSAA
Sparse Sparse Sparse
R16Float? All All All All All All All All
RG8Unorm All All All All All All All All
RG8Unorm_sRGB All All All All All All All Not available
RG8Snorm All All All All All All All All
. . . . Write Write Write .
RG8Uint Coor Color Coor Cor Cor Coor Coor g
n MSAA MSAA MSAA MSAA MSAA
Sparse Sparse Sparse

May 26, 2023

Page 10 of 15

Copyright © 2023 Apple Inc. All Rights Reserved.

GPU family? Apple2 Apple3 Apple4 Apple5 Appleéb Apple?7 AppleS8 Mac2
Packed 16-bit pixel formats? Texture capabilities for packed 16-bit pixel formats by GPU family
. . . . Filter Filter Filter
B5G6R5Unorm (F:'cl)tke)rr glcl;(lirr (lecl)tke)rr glcl;(lirr Color Color Color
il MSAA MSAA MSAA MSAA M/ M/ M/ Not available
ABGR4Unorm Resolve Resolve Resolve
Resolve Resolve Resolve Resolve
BGR5A1Unorm Blend Blend Blend
Blend Blend Blend Blend
Sparse Sparse Sparse
Ordinary 32-bit pixel formats Texture capabilities for ordinary 32-bit pixel formats by GPU family
R32Uint2 Write Write Write Write il il il it
R32Sint2 Color Color Color Color Sl el Sl Sielle
Sparse Sparse Sparse MSAA
Write Write Write Write wiite wiite wiite
Color Color Color Color Color Color Color
21
R32Float2:¢ MSAA MSAA MSAA MSAA MSAA MSAA MSAA All
Blend Blend Blend
Blend Blend Blend Blend
Sparse Sparse Sparse
. . . . Filter Filter Filter
F|It.er F|It'er F|It.er F|It'er Write Write Write
Write Write Write Write
RG16Unorm Color Color Color Color Color Color Color Al
RG16Snorm MSAA MSAA MSAA MSAA MSAA MSAA MSAA
Blend Blend Blend
Blend Blend Blend Blend
Sparse Sparse Sparse
) . . . Write Write Write .
bre goe e e coo cda coor g
RE16S1nt MSAA MSAA MSAA MSAA MSAA MSAA MSAA MSAA
Sparse Sparse Sparse
RG16Float All All All All All All All All
RGBA8S8UNnorm?2 All All All All All All All All
Filter
Color
RGBA8Unorm_sRGB All All All All All All All MSAA
Resolve
Blend
RGBA8Snorm All All All All All All All All
) .) . Write Write Write .
grie gme ge gt cdo Cdw Cor Bne
1 2
RGBA8S1int MSAA MSAA MSAA MSAA MSAA MSAA MSAA MSAA
Sparse Sparse Sparse
BGRA8SUnorm All All All All All All All All
Filter
Color
BGRA8Unorm_sRGB All All All All All All All MSAA
Resolve
Blend

May 26, 2023

Page 11 of 15

Copyright © 2023 Apple Inc. All Rights Reserved.

GPU family? Apple2 Apple3 Apple4 Apple5 Appleéb Apple?7 Apple8 Mac2
Packed 32-bit pixel formats Texture capabilities for packed 32-bit pixel formats by GPU family
Filter
Color
RGB1OA2Unorm MSAA All All All All All All All
Resolve
Blend
BGR10A2Unorm All All All All All All All All
oo W wme wme Mmoo gme e e
RGB1OA2Uint Color Color Color Color
il MSAA MSAA MSAA iz i iz MSAA
Sparse Sparse Sparse
Filter
Color
RG11B10Float? MSAA All All All All All All All
Resolve
Blend
Filter
Color
RGB9E5Float? MSAA All All All All All All Filter
Resolve
Blend
Ordinary 64-bit pixel formats Texture capabilities for ordinary 64-bit pixel formats by GPU family
. Write Write .
RG32Uint Write Write Write Write g;;f)er Color Color é\g;:ﬁ
RG32Sint Color Color Color Color MSAA MSAA
Sparse MSAA
Sparse Sparse
Write Write Write
Write Write Write Write Color Color Color
RG32Float®é Color Color Color Color Blend MSAA MSAA All
Blend Blend Blend Blend Blend Blend
Sparse
Sparse Sparse
. . . . Filter Filter Filter
Fllt.er Fllt.er F|It.er Fllt.er Write Write Write
Write Write Write Write
RGBA16Unorm Color Color Color Color Color Color Color All
RGBA16Snorm MSAA MSAA MSAA MSAA MSAA MSAA MSAA
Blend Blend Blend
Blend Blend Blend Blend
Sparse Sparse Sparse
. . . . Write Write Write .
roakLUin: fre gme g g cdo Cdw Cowr QN
1 2
RGBA16S1int MSAA MSAA MSAA MSAA MSAA MSAA MSAA MSAA
Sparse Sparse Sparse
RGBAl16Float2 All All All All All All All All
Ordinary 128-bit pixel formats Texture capabilities for ordinary 128-bit pixel formats by GPU family
RGBA32Uint2 Write Write Write Write Write Write Write Write
RGBA32Sint2 Color Color Color Color e chler e caler
Sparse Sparse Sparse MSAA
Write Write Write
Write Write Write Write Color Color
2,6
RGBA32Float Color Color Color Color e MSAA MSAA Al
Sparse
Sparse Sparse
May 26, 2023 Page 12 of 15 Copyright © 2023 Apple Inc. All Rights Reserved.

GPU family? Apple2 Apple3 Apple4 Apple5 Appleéb Apple?7 Apple8 Mac2
Compressed pixel formats? Texture capabilities for compressed pixel formats by GPU family
PVRTC pixel formats3 Filter Filter Filter Filter Flites Flites Flites Not available
Sparse Sparse Sparse
. Filter Filter Filter .
EAC/ETC pixel formats Filter Filter Filter Filter Sparse Sparse Sparse Not available
. Filter Filter Filter .
ASTC pixel formats Filter Filter Filter Filter Sparse Sparse Sparse Not available
HDR ASTC pixel f t Not available Not available Not available Not available Flites Flites Flites Not available
pixel formats Sparse Sparse Sparse
BC pixel formats Not available ~ Not available Not available Not available Not available Varies8 Varies8 Filter
YUV pixel formats4.7 Texture capabilities for YUV pixel formats by GPU family
GBGR422
BGRG422 Filter Filter Filter Filter Filter Filter Filter Filter
Depth and stencil pixel formats? Texture capabilities for depth and stencil pixel formats by GPU family
. Filter .
Filter Filter Filter Filter Filter Filter MSAA Filter
Depthlé6Unorm MSAA MSAA MSAA MSAA MSAA MSAA
MSAA Resolve
Resolve Resolve Resolve Resolve Resolve Resolve
Sparse
MSAA Filter
MSAA MSAA MSAA MSAA MSAA
Depth32Float IR Resolve Resolve Resolve Resolve Resolve seseliie S
Sparse Resolve
. MSAA
Stenc118 MSAA MSAA MSAA MSAA MSAA MSAA Sparse MSAA
Filter
Depth24Unorm_Stenci185 Not available Not available Not available Not available Not available Not available Not available MSAA
Resolve
Filter
. MSAA MSAA MSAA MSAA MSAA MSAA
Depth32Float_Stenc1l8 A Resolve Resolve Resolve Resolve Resolve Resolve M
Resolve
X24 Stencil8 Not available Not available Not available = Not available Not available Not available Not available MSAA
X32_Stencil8 MSAA MSAA MSAA MSAA MSAA MSAA MSAA MSAA

Extended range and wide color pixel formats

Texture capabilities for extended range and wide color formats by GPU family

BGRA10_XR
BGRA10_XR_sRGB
BGR10_XR
BGR10_XR_sRGB

Not available

All

All

All

All

All

All

Not available

1. See MTLGPUFamily for each GPU family’s enumeration constant.

2. Some GPUs support read-write textures — where a kernel can both read from and write to a texture. You can check an individual GPU's support for this feature by inspecting its
MTLDevice.readWriteTextureSupport property at runtime.

3. Only the GPUs in Apple 3 and Apple 4 families support MTLSamplerAddressMode.clampToZero for the PVRTC pixel formats.

4. The GPUs in Apple 6 through Apple 8 families don't support sparse textures with YUV pixel formats.

5. Some GPUs support MTLPixelFormat.depth24Unorm_stencil8. You can check an individual GPU's support for this pixel format by inspecting its

MTLDevice.isDepth24Stencil8PixelFormatSupported property at runtime.

6. Some GPUs in the Apple 7 and Apple 8 families additionally support Filter and Resolve (and therefore, All) 32-bit float capabilities. You can check whether a GPU supports 32-bit float Filter
and Resolve by inspecting the MTLDevice.supports32BitFloatFiltering property at runtime.

7. Formats in this group are not compatible with lossy texture compression through MTLTextureDescriptor.compressionType.

8. Some GPU devices in the Apple7 and Apple8 families support filtering BC compressed textures on iPadOS. You can check whether a GPU supports BC texture compression by inspecting
its MTLDevice.supportsBCTextureCompression property at runtime.

9. The A8Unorm pixel format is incompatible with imageblocks with explicit layout. Use either an R8Unoxrm texture view, or imageblocks with implicit layout.

May 26, 2023

Page 13 of 15

Copyright © 2023 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtlgpufamily
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/2887289-readwritetexturesupport
https://developer.apple.com/documentation/metal/mtlsampleraddressmode
https://developer.apple.com/documentation/metal/mtlsampleraddressmode/clamptozero/
https://developer.apple.com/documentation/metal/mtlpixelformat
https://developer.apple.com/documentation/metal/mtlpixelformat/depth24unorm_stencil8
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/1433371-isdepth24stencil8pixelformatsupp
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3566545-supports32bitfloatfiltering
https://developer.apple.com/documentation/metal/mtltexturedescriptor
https://developer.apple.com/documentation/metal/mtltexturedescriptor/3763055-compressiontype
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3566547-supportsbctexturecompression

Texture buffer pixel formats

These tables list the pixel formats that texture buffers support and the GPU's read/write access to textures with those formats:
- All: The GPU can use all the accesses below for a texture buffer with the pixel format.

- Read: The GPU can use read access for a texture buffer with the pixel format.

- Write: The GPU can use write access for a texture buffer with the pixel format.

- Read/Write": The GPU can use read_write access for a texture buffer with the pixel format.

Note
The GPU capabilities are generally the same across all hardware families, but some GPUs have additional options.2
Ordinary 8-bit pixel formats Ordinary 32-bit pixel formats Packed 32-bit pixel formats
Format Access Format Access Format Access
R32Uint Read
A8Unorm All R32Sint All RGB10A2Unorm Write
R8Unorm Al R32Float All RGB10A2Uint Read
Write
Read RG16Unorm Read Read
R8Snorm Write RG16Snorm Write RG11B10Float Write
R8Uint All RG16Uint Read
R8Sint RG16Sint Write Ordinary 64-bit pixel formats
Read Format Access
Ordinary 16-bit pixel formats RG16Float Write
RG32Uint Read
Format Access RGBASUnorm All RG32Sint Write
R16Unorm Read Read
RUEEE Write RGBA8Snorm Sveratz RG32Float Write
i
R16Uint Al - RGBA16Unorm Read
R16Sint RGBABUInt Al RGBA16Snorm Write
RGBAS8Sint
RGBA16Uint
R16Float All . All
BGRA8Unorm Read RGBA16Sint
Read
RG8Unorm Write RGBA16Float All
Read
RG8Snorm Write Ordinary 128-bit pixel formats
RG8Uint Regd Format Access
RG8Sint Write
RGBA32Uint All
RGBA32Sint
RGBA32Float All

1. GPUs with the Tier 2 feature set support read_write access to textures. You can check an individual GPU's support for this pixel format by inspecting its
MTLDevice.readWriteTextureSupport property at runtime.

2. Some devices support this pixel format. Check a device by inspecting its MTLDevice.depth24Stencil8PixelFormatSupported property at runtime.

May 26, 2023 Page 14 of 15 Copyright © 2023 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/2887289-readwritetexturesupport
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/1433371-isdepth24stencil8pixelformatsupp

[

Apple Inc.

Copyright © 2023 Apple Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any person is hereby authorized to
store documentation on a single computer or device for personal use only and
to print copies of documentation for personal use provided that the
documentation contains Apple’s copyright notice.

No licenses, express or implied, are granted with respect to any of the
technology described in this document. Apple retains all intellectual property
rights associated with the technology described in this document. This
document is intended to assist application developers to develop applications
only for Apple-branded products.

Apple Inc.
One Apple Park Way
Cupertino, CA 95014

Apple is a trademark of Apple Inc., registered in the U.S. and other countries.

APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT, ERROR OR INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the exclusion of implied warranties or
liability, so the above exclusion may not apply to you.

2023-05-26 | Copyright © 2023 Apple Inc. All Rights Reserved.
Page 15 of 15

