
Metal feature set tables

 Developer

Apple GPUs
Apple GPU family1 GPUs in family Corresponding feature sets

Apple2 A8 iOS GPU Family 2

tvOS GPU Family 1

Apple3 A9, A10 iOS GPU Family 3

tvOS GPU Family 2

Apple4 A11 iOS GPU Family 4

Apple5 A12 iOS GPU Family 5

Apple6 A13 —

Apple7 A14

M1, M1 Pro, M1 Max, M1 Ultra —

Apple8 A15

M2 —

1. See MTLGPUFamily for each GPU family’s enumeration constant.

This table lists each current Apple GPU family, its processors, and how each family relates to older feature sets.

June 6, 2022 Page of 1 1 Copyright © 2022 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtlgpufamily

Metal 3 GPUs
Metal GPU family1 Platform GPUs in family

Metal3

iOS A13, A14, A15

iPadOS A13, A14, A15

M1

macOS

M1, M1 Pro, M1 Max, M1 Ultra

M2

AMD Vega

AMD 5000-series, 6000-series

Intel UHD Graphics 630

Intel Iris Pro Graphics

1. See MTLGPUFamily for each GPU family’s enumeration constant.

This table lists each current Metal 3 GPU family and the processors in that family.

June 6, 2022 Page of 1 13 Copyright © 2022 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtlgpufamily

Metal feature availability by GPU family
	 GPU family1 Common1 Common2 Common3 Metal3 Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2

Feature Available in family

MetalKit ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Metal Performance Shaders ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Programmable blending ✓ ✓ ✓ ✓ ✓ ✓ ✓

PVRTC pixel formats ✓ ✓ ✓ ✓ ✓ ✓ ✓

EAC/ETC pixel formats ✓ ✓ ✓ ✓ ✓ ✓ ✓

ASTC pixel formats ✓ ✓ ✓ ✓ ✓ ✓ ✓

BC pixel formats ✓

Compressed volume texture formats ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Extended range pixel formats ✓ ✓ ✓ ✓ ✓ ✓

Wide color pixel format ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Depth-16 pixel format ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linear textures ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MSAA depth resolve ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Array of textures (read) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Array of textures (write) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cube map texture arrays ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Stencil texture views ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Array of samplers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sampler max anisotropy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sampler LOD clamp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MTLSamplerState support for comparison
functions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

16-bit unsigned integer coordinates ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Border color ✓ ✓ ✓ ✓

Counting occlusion query ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Base vertex/instance drawing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Layered rendering ✓ ✓ ✓ ✓ ✓ ✓ ✓

Layered rendering to multisample textures ✓ ✓ ✓ ✓ ✓

Memoryless render targets ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dual-source blending ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Combined MSAA store and resolve action ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MSAA blits ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Programmable sample positions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Deferred store action ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Texture barriers ✓

Memory barriers 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tessellation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

	 GPU family1

June 6, 2022 Page of 2 13 Copyright © 2022 Apple Inc. All Rights Reserved.

Indirect tessellation arguments ✓ ✓ ✓ ✓ ✓ ✓

Tessellation in indirect command buffers ✓ ✓ ✓ ✓ ✓ ✓

Resource heaps ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Function specialization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Read/write buffers in functions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Read/write textures in functions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Extract, insert, and reverse bits ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SIMD barrier ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Indirect draw & dispatch arguments ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Argument buffers tier Varies Varies Varies Tier 2 Tier 1 Tier 1 Tier 1 Tier 1 Tier 2 Tier 2 Tier 2 Tier 2

Indirect command buffers (rendering) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Indirect command buffers (compute) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Uniform type ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Imageblocks ✓ ✓ ✓ ✓ ✓

Tile shaders ✓ ✓ ✓ ✓ ✓

Imageblock sample coverage control ✓ ✓ ✓ ✓ ✓

Post-depth coverage ✓ ✓ ✓ ✓ ✓

Quad-scoped permute operations ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SIMD-scoped permute operations ✓ ✓ ✓ ✓ ✓

SIMD-scoped reduction operations ✓ ✓ ✓ ✓

SIMD-scoped matrix multiply operations ✓ ✓

Raster order groups3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Varies

Non-uniform threadgroup size ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multiple viewports ✓ ✓ ✓ ✓ ✓ ✓ ✓

Device notifications ✓

Stencil feedback ✓ ✓ ✓ ✓ ✓ ✓ ✓

Stencil resolve ✓ ✓ ✓ ✓ ✓ ✓ ✓

Non-square tile dispatch ✓ ✓ ✓ ✓

Texture swizzle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Placement heap ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Primitive ID ✓ ✓ ✓ ✓

Barycentric coordinates4 Varies ✓ ✓ Varies

Read/write cube map textures in functions ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sparse textures ✓ ✓ ✓

Sparse depth and stencil textures ✓

Variable rasterization rate5 ✓ ✓ ✓ Varies

Vertex amplification6 ✓ ✓ ✓ Varies

64-bit integer math ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lossy texture compression ✓

Common1 Common2 Common3 Metal3 Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2	 GPU family1

June 6, 2022 Page of 3 13 Copyright © 2022 Apple Inc. All Rights Reserved.

SIMD shift and fill ✓

Render dynamic libraries ✓ ✓ ✓

Compute dynamic libraries ✓ ✓ ✓ ✓ ✓

Mesh shading ✓ ✓ ✓ ✓

MetalFX spatial upscaling Varies Varies Varies ✓

MetalFX temporal upscaling Varies Varies Varies

Fast resource loading ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ray tracing in compute pipelines ✓ ✓ ✓ ✓ ✓

Ray tracing in render pipelines ✓ ✓ ✓

Floating point atomics ✓ ✓ ✓

Common1 Common2 Common3 Metal3 Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2	 GPU family1

1. See MTLGPUFamily for each GPU family’s enumeration constant.

2. The GPUs in Apple3 through Apple8 families only support memory barriers for compute command encoders, and for vertex-to-vertex and vertex-to-fragment stages of render command encoders.

3. Some GPU devices in Mac families support raster order groups. You can check an individual GPU’s support for this feature by inspecting its MTLDevice.rasterOrderGroupsSupported property at runtime.

4. Some GPU devices in the Mac 2 and Metal 3 families support barycentric coordinates. You can check an individual GPU’s support for this feature by inspecting its MTLDevice.supportsShaderBarycentricCoordinates

property at runtime.

5. Some GPU devices in the Mac 2 family support variable rasterization rates. You can check an individual GPU’s support for this feature by calling its MTLDevice.supportsRasterizationRateMap(layerCount:) method at

runtime.

6. Some Mac 2 family GPU devices support vertex amplification. You can check an individual GPU’s support for this feature by calling its MTLDevice.supportsVertexAmplificationCount(_:) method at runtime.

June 6, 2022 Page of 4 13 Copyright © 2022 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtlgpufamily
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/2887285-rasterordergroupssupported
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3325837-supportsshaderbarycentriccoordin
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3131682-supportsrasterizationratemap
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/3197984-supportsvertexamplificationcount

Implementation limits by GPU family

GPU family1 Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2

Function arguments Function arguments

Maximum number of vertex attributes, per vertex
descriptor 31 31 31 31 31 31 31 31

Maximum number of entries in the buffer argument
table, per graphics or kernel function 31 31 31 31 31 31 31 31

Maximum number of entries in the texture argument
table, per graphics or kernel function 31 31 96 96 128 128 128 128

Maximum number of entries in the sampler state
argument table, per graphics or kernel function2 16 16 16 16 16 16 16 16

Maximum number of entries in the threadgroup
memory argument table, per kernel function 31 31 31 31 31 31 31 31

Maximum number of constant buffer arguments in
vertex, fragment, tile, or kernel function 31 31 31 31 31 31 31 14

Maximum length of constant buffer arguments in
vertex, fragment, tile, or kernel function 4 KB 4 KB 4 KB 4 KB 4 KB 4 KB 4 KB 4 KB

Maximum threads per threadgroup3 512 512 1024 1024 1024 1024 1024 1024

Maximum total threadgroup memory allocation 16352 B 16 KB 32 KB 32 KB 32 KB 32 KB 32 KB 32 KB

Maximum total tile memory allocation4 Not accessible Not accessible 32 KB 32 KB 32 KB 32 KB 32 KB Not accessible

Threadgroup memory length alignment 16 B 16 B 16 B 16 B 16 B 16 B 16 B 16 B

Maximum function memory allocation for a buffer in
the constant address space No limit No limit No limit No limit No limit No limit No limit No limit

Maximum scalars or vectors inputs to a fragment
function. (Declare with the [[stage_in]] qualifier4.) 60 60 124 124 124 124 124 32

Maximum number of input components to a fragment
function. (Declare with the [[stage_in]] qualifier5.) 60 60 124 124 124 124 124 124

Maximum number of function constants 65536 65536 65536 65536 65536 65536 65536 65536

Maximum tessellation factor Not available 16 16 64 64 64 64 64

GPU family1

June 6, 2022 Page of 5 13 Copyright © 2022 Apple Inc. All Rights Reserved.

Maximum number of viewports and scissor
rectangles, per vertex function 1 1 1 16 16 16 16 16

Maximum number of raster order groups, per
fragment function Not available Not available 8 8 8 8 8 8

Argument buffers6 Argument buffers6

Maximum number of buffers you can access, per
stage, from an argument buffer 31 31 96 96 Unlimited Unlimited Unlimited Unlimited

Maximum number of textures you can access, per
stage, from an argument buffer 31 31 96 96 1 M 1 M 1 M 1 M

Maximum number of samplers you can access, per
stage, from an argument buffer 16 16 16 16 1024 1024 1024 1024

Resources Resources

Minimum constant buffer offset alignment 4 B 4 B 4 B 4 B 4 B 4 B 4 B 32 B

Maximum 1D texture width 8192 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px

Maximum 2D texture width and height 8192 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px

Maximum cube map texture width and height 8192 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px 16384 px

Maximum 3D texture width, height, and depth 2048 px 2048 px 2048 px 2048 px 2048 px 2048 px 2048 px 2048 px

Maximum number of layers per 1D texture array, 2D
texture array, or 3D texture 2048 2048 2048 2048 2048 2048 2048 2048

Buffer alignment for copying an existing texture to a
buffer 64 B 16 B 16 B 16 B 16 B 16 B 16 B 256 B

Render targets Render targets

Maximum number of color render targets per render
pass descriptor 8 8 8 8 8 8 8 8

Maximum size of a point primitive 54 54 54 54 54 54 54 54

Maximum total render target size, per pixel, when
using multiple color render targets 256 bits 256 bits 512 bits 512 bits 512 bits 512 bits 512 bits No limit

Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2GPU family1

June 6, 2022 Page of 6 13 Copyright © 2022 Apple Inc. All Rights Reserved.

Maximum visibility query offset 65528 B 65528 B 65528 B 65528 B 65528 B 256 KB 256 KB 256 KB

Synchronization Synchronization

Maximum number of fences 32768 32768 32768 32768 32768 32768 32768 32768

Maximum vertex count for vertex amplification Not available Not available Not available Not available 2 2 2 Not available

Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2GPU family1

1. See MTLGPUFamily for each GPU family’s enumeration constant.

2. Inline constexpr samplers that you declare in Metal Shading Language (MSL) code count against the limit. For example, for a feature set limit of 16, you can have 12 API samplers and 4

language samplers (16 total), but you can’t have 12 API samplers and 6 language samplers (18 total).

3. The values in this row are the theoretical maximum number of threads per threadgroup. Check the actual maximum by inspecting the
MTLComputePipelineState.maxTotalThreadsPerThreadgroup property at runtime.

4. You can allocate memory between imageblock and threadgroup memory, but the sum of these allocations can’t exceed the maximum total tile memory limit. Some feature sets can’t
access tile memory directly, but they can access threadgroup memory.

5. A vector counts as n scalars, where n is the number of components in the vector. The iOS and tvOS feature sets only reach the maximum number of inputs if you don’t exceed the
maximum number of input components. For example, you can have 60 float inputs (components), but you can’t have 60 float4 inputs, which total 240 components.

6. The limits apply to the items you place both in the argument buffers you bind directly and in the argument buffers you can access indirectly through your bound argument buffers.

June 6, 2022 Page of 7 13 Copyright © 2022 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtlgpufamily
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/documentation/metal/mtlcomputepipelinestate
https://developer.apple.com/documentation/metal/mtlcomputepipelinestate/1414927-maxtotalthreadsperthreadgroup

GPU texture capabilities by pixel format

GPU family2 Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2

Ordinary 8-bit pixel formats Texture capabilities for ordinary 8-bit pixel formats by GPU Family

A8Unorm Filter Filter Filter Filter Filter

Sparse

Filter

Sparse

Filter

Sparse Filter

R8Unorm1 All All All All All All All All

R8Unorm_sRGB All All All All All All All Not available

R8Snorm All All All All All All All All

R8Uint1
R8Sint1

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Ordinary 16-bit pixel formats Texture capabilities for ordinary 16-bit pixel formats by GPU family

R16Unorm 
R16Snorm

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Sparse

Filter

Write

Color

MSAA

Blend

Sparse

Filter

Write

Color

MSAA

Blend

Sparse

All

R16Uint1
R16Sint1

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

R16Float1 All All All All All All All All

RG8Unorm All All All All All All All All

RG8Unorm_sRGB All All All All All All All Not available

RG8Snorm All All All All All All All All

RG8Uint 
RG8Sint

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Packed 16-bit pixel formats Texture capabilities for packed 16-bit pixel formats by GPU family

B5G6R5Unorm 
A1BGR5Unorm 
ABGR4Unorm 
BGR5A1Unorm

Filter

Color

MSAA

Resolve

Blend

Filter

Color

MSAA

Resolve

Blend

Filter

Color

MSAA

Resolve

Blend

Filter

Color

MSAA

Resolve

Blend

Filter

Color

MSAA

Resolve

Blend

Sparse

Filter

Color

MSAA

Resolve

Blend

Sparse

Filter

Color

MSAA

Resolve

Blend

Sparse

Not available

This table lists the GPU’s texture capabilities for each pixel format:

• All: The GPU has all of the texture capabilities below for the pixel format.

• Filter: The GPU can filter a texture with the pixel format during sampling.

• Write: The GPU can write to a texture on a per-pixel basis with the pixel format.1

• Color: The GPU can use a texture with the pixel format as a color render target.

• Blend: The GPU can blend a texture with the pixel format.

• MSAA: The GPU can use a texture with the pixel format as a destination for multisample antialias (MSAA) data.

• Sparse: The GPU supports sparse-texture allocations for textures with the pixel format.

• Resolve: The GPU can use a texture with the pixel format as a source for multisample antialias (MSAA) resolve operations.

Note

All graphics and compute kernels can read or sample a texture with any pixel format.

June 6, 2022 Page of 8 13 Copyright © 2022 Apple Inc. All Rights Reserved.

Ordinary 32-bit pixel formats Texture capabilities for ordinary 32-bit pixel formats by GPU family

R32Uint1
R32Sint1

Write

Color

Write

Color

Write

Color

Write

Color

Write

Color

Sparse

Write

Color

Sparse

Write

Color

Sparse

Write

Color

MSAA

R32Float1
Write

Color

MSAA
Blend

Write

Color

MSAA
Blend

Write

Color

MSAA
Blend

Write

Color

MSAA
Blend

Write

Color

MSAA
Blend

Sparse

Write

Color

MSAA
Blend

Sparse

Write

Color

MSAA
Blend

Sparse

All

RG16Unorm 
RG16Snorm

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Sparse

Filter

Write

Color

MSAA

Blend

Sparse

Filter

Write

Color

MSAA

Blend

Sparse

All

RG16Uint 
RG16Sint

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

RG16Float All All All All All All All All

RGBA8Unorm1 All All All All All All All All

RGBA8Unorm_sRGB All All All All All All All

Filter

Color

MSAA

Resolve

Blend

RGBA8Snorm All All All All All All All All

RGBA8Uint1 
RGBA8Sint1

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

BGRA8Unorm All All All All All All All All

BGRA8Unorm_sRGB All All All All All All All

Filter

Color

MSAA

Resolve

Blend

Packed 32-bit pixel formats Texture capabilities for packed 32-bit pixel formats by GPU family

RGB10A2Unorm

Filter

Color

MSAA

Resolve

Blend

All All All All All All All

GPU family2 Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2

June 6, 2022 Page of 9 13 Copyright © 2022 Apple Inc. All Rights Reserved.

RGB10A2Uint Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

RG4B10Float

Filter

Color

MSAA

Resolve

Blend

All All All All All All All

RGB9E5Float

Filter

Color

MSAA

Resolve

Blend

All All All All All All Filter

Ordinary 64-bit pixel formats Texture capabilities for ordinary 64-bit pixel formats by GPU family

RG32Uint 
RG32Sint

Write

Color

Write

Color

Write

Color

Write

Color

Write

Color

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

RG32Float
Write

Color
Blend

Write

Color
Blend

Write

Color
Blend

Write

Color
Blend

Write

Color
Blend

Sparse

Write

Color
MSAA
Blend

Sparse

Write

Color
MSAA
Blend

Sparse

All

RGBA16Unorm 
RGBA16Snorm

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Filter

Write

Color

MSAA

Blend

Sparse

Filter

Write

Color

MSAA

Blend

Sparse

Filter

Write

Color

MSAA

Blend

Sparse

All

RGBA16Uint1 
RGBA16Sint1

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

RGBA16Float1 All All All All All All All All

Ordinary 128-bit pixel formats Texture capabilities for ordinary 128-bit pixel formats by GPU family

RGBA32Uint1 
RGBA32Sint1

Write

Color

Write

Color

Write

Color

Write

Color

Write

Color

Sparse

Write

Color

Sparse

Write

Color

Sparse

Write

Color

MSAA

RGBA32Float1 Write

Color

Write

Color

Write

Color

Write

Color

Write

Color

Sparse

Write

Color

MSAA

Sparse

Write

Color

MSAA

Sparse

All

Compressed pixel formats Texture capabilities for compressed pixel formats by GPU family

PVRTC pixel formats3 Filter Filter Filter Filter Filter

Sparse

Filter

Sparse

Filter

Sparse Not available

EAC/ETC pixel formats Filter Filter Filter Filter Filter

Sparse

Filter

Sparse

Filter

Sparse Not available

ASTC pixel formats Filter Filter Filter Filter Filter

Sparse

Filter

Sparse

Filter

Sparse Not available

HDR ASTC pixel formats Not available Not available Not available Not available Filter

Sparse

Filter

Sparse

Filter

Sparse Not available

BC pixel formats Not available Not available Not available Not available Not available Not available Not available Filter

YUV pixel formats4 Texture capabilities for YUV pixel formats by GPU family

GBGR422 
BGRG422 Filter Filter Filter Filter Filter Filter Filter Filter

GPU family2 Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2

June 6, 2022 Page of 10 13 Copyright © 2022 Apple Inc. All Rights Reserved.

Depth and stencil pixel formats Texture capabilities for depth and stencil pixel formats by GPU family

Depth16Unorm Filter

MSAA

Filter

MSAA

Resolve

Filter

MSAA

Resolve

Filter

MSAA

Resolve

Filter

MSAA

Resolve

Filter

MSAA

Resolve

Filter

MSAA

Resolve

Sparse

Filter

MSAA

Resolve

Depth32Float MSAA MSAA

Resolve

MSAA

Resolve

MSAA

Resolve

MSAA

Resolve

MSAA

Resolve

MSAA

Resolve

Sparse

Filter

MSAA

Resolve

Stencil8 MSAA MSAA MSAA MSAA MSAA MSAA MSAA

Sparse MSAA

Depth24Unorm_Stencil85 Not available Not available Not available Not available Not available Not available Not available
Filter

MSAA

Resolve

Depth32Float_Stencil8 MSAA MSAA

Resolve

MSAA

Resolve

MSAA

Resolve

MSAA

Resolve

MSAA

Resolve

MSAA

Resolve

Filter

MSAA

Resolve

X24_Stencil8 Not available Not available Not available Not available Not available Not available Not available MSAA

X32_Stencil8 MSAA MSAA MSAA MSAA MSAA MSAA MSAA MSAA

Extended range and wide color pixel formats Texture capabilities for extended range and wide color formats by GPU family

BGRA10_XR 
BGRA10_XR_sRGB 
BGR10_XR 

BGR10_XR_sRGB
Not available All All All All All All Not available

BGR10A2Unorm All All All All All All All All

GPU family2 Apple2 Apple3 Apple4 Apple5 Apple6 Apple7 Apple8 Mac2

1. Some GPUs support read-write textures — where a kernel can both read from and write to a texture. You can check an individual GPU’s support for this feature by inspecting its
MTLDevice.readWriteTextureSupport property at runtime.

2. See MTLGPUFamily for each GPU family’s enumeration constant.

3. Only the GPUs in Apple 3 and Apple 4 families support MTLSamplerAddressMode.clampToZero for the PVRTC pixel formats.

4. The GPUs in Apple 6 through Apple 8 families don’t support sparse textures with YUV pixel formats.

5. Some GPUs support MTLPixelFormat.depth24Unorm_stencil8. You can check an individual GPU’s support for this pixel format by inspecting its
MTLDevice.isDepth24Stencil8PixelFormatSupported property at runtime.

June 6, 2022 Page of 11 13 Copyright © 2022 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/2887289-readwritetexturesupport
https://developer.apple.com/documentation/metal/mtlgpufamily
https://developer.apple.com/documentation/metal/mtlsampleraddressmode
https://developer.apple.com/documentation/metal/mtlsampleraddressmode/clamptozero/
https://developer.apple.com/documentation/metal/mtlpixelformat
https://developer.apple.com/documentation/metal/mtlpixelformat/depth24unorm_stencil8
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/1433371-isdepth24stencil8pixelformatsupp

Ordinary 32-bit pixel formats

Format Access

R32Uint
R32Sint All

R32Float All

RG16Unorm
RG16Snorm

Read

Write

RG16Uint
RG16Sint

Read

Write

RG16Float Read

Write

RGBA8Unorm All

RGBA8Snorm Read

Write

RGBA8Uint
RGBA8Sint All

BGRA8Unorm Read

These tables list the pixel formats that texture buffers support and the GPU’s read/write access to textures with those formats:

• All: The GPU can use all the accesses below for a texture in the pixel format.

• Read: The GPU can use read access for a texture buffer with the pixel format.

• Write: The GPU can use write access for a texture buffer with the pixel format.

• Read/Write1: The GPU can use read_write access for a texture buffer with the pixel format.

Note

The GPU capabilities are generally the same across all hardware families, but some GPUs have additional options.2

Packed 32-bit pixel formats

Format Access

RGB10A2Unorm Read

Write

RGB10A2Uint Read

Write

RG4B10Float Read

Write

Texture buffer pixel formats

1. GPUs with the Tier 2 feature set support read_write access to textures. You can check an individual GPU’s support for this pixel format by inspecting its
MTLDevice.readWriteTextureSupport property at runtime.

2. Some devices support this pixel format. Check a device by inspecting its MTLDevice.depth24Stencil8PixelFormatSupported property at runtime.

Ordinary 16-bit pixel formats

Format Access

R16Unorm
R16Snorm

Read

Write

R16Uint
R16Sint All

R16Float All

RG8Unorm Read

Write

RG8Snorm Read

Write

RG8Uint
RG8Sint

Read

Write

Ordinary 8-bit pixel formats

Format Access

A8Unorm Read

R8Unorm All

R8Snorm Read

Write

R8Uint
R8Sint All Ordinary 64-bit pixel formats

Format Access

RG32Uint
RG32Sint

Read

Write

RG32Float Read

Write

RGBA16Unorm
RGBA16Snorm

Read

Write

RGBA16Uint
RGBA16Sint All

RGBA16Float All

Ordinary 128-bit pixel formats

Format Access

RGBA32Uint
RGBA32Sint All

RGBA32Float All

June 6, 2022 Page of 12 13 Copyright © 2022 Apple Inc. All Rights Reserved.

https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/2887289-readwritetexturesupport
https://developer.apple.com/documentation/metal/mtldevice
https://developer.apple.com/documentation/metal/mtldevice/1433371-isdepth24stencil8pixelformatsupp



Apple Inc.
Copyright © 2022 Apple Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any person is hereby authorized to
store documentation on a single computer or device for personal use only and
to print copies of documentation for personal use provided that the
documentation contains Apple’s copyright notice.

No licenses, express or implied, are granted with respect to any of the
technology described in this document. Apple retains all intellectual property
rights associated with the technology described in this document. This
document is intended to assist application developers to develop applications
only for Apple-branded products.

Apple Inc.
One Apple Park Way
Cupertino, CA 95014

Apple is a trademark of Apple Inc., registered in the U.S. and other countries.

APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT, ERROR OR INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the exclusion of implied warranties or
liability, so the above exclusion may not apply to you.

2022-02-15 | Copyright © 2022 Apple Inc. All Rights Reserved.

Page of 13 13

