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Chapter 1. Introduction

1.1

Apple silicon M Series and recent A Series chip designs include two flavors of general
purpose cores, along with a graphics processing unit (GPU), a neural engine (ANE),

a high-performance fabric, caches, and more. This guide discusses performance
optimization opportunities found in the general purpose compute complex, focusing
primarily on the general purpose cores (CPUs) and related components. Within a
generation, such as M1 Generation chips (see Section 1.1, “Generation and Series
Naming Conventions"), the general purpose compute core designs are the same.
However, the core counts, chip topology, bandwidths, and other systems components
and characteristics may differ. This guide covers Apple silicon M Series CPUs beginning
with the M1 generation and Apple silicon A Series CPUs beginning with the A14 Bionic.

This guide contains information useful for a wide range of developers. Coverage
includes:

* Fundamental CPU and chip characteristics for developers interested in performance
and who code primarily in high-level languages, including those developers new to
performance optimization

* Detailed instruction descriptions for developers willing to code at the instruction level
to leverage the capabilities of the instruction set architecture (ISA)

* Detailed CPU and chip characteristics for developers interested in getting the most
from the microarchitecture by coding longer sequences at the instruction level

The discussions in this guide assume that the reader has a basic understanding of
instruction level programming, but not of any particular ISA. Likewise, it assumes the
reader has knowledge of foundational processor design concepts such as caches, but
the guide provides a concise introduction to overall processor microarchitecture.

The guide begins with some background material and then proceeds to discuss the ISA
followed by the processor microarchitecture. Within the microarchitecture chapters, the
topics are contained to allow the reader to jump to specific sections of interest, but
organized to follow the path that instructions flow through the processor.

Note: The optimizations recommended in this guide are intended to be beneficial

for all core types in current and future chip generations, unless otherwise noted.
However, the guide cannot cover all scenarios, and there may be instances where
actual performance is different than described. And while future chip generations may
make different microarchitectural tradeoffs and some performance details may change,
the recommendations are anticipated to endure. Any altered recommendations will be
clearly noted.

Generation and Series Naming Conventions

To simplify references to multiple chips, the following naming conventions are used in
this guide:
* Mx Generation: All Mx, Mx Pro, Mx Max, and Mx Ultra chips, such as M1, M1 Pro, M1
Max, and M1 Ultra chips
Copyright © 2024 Apple Inc. | 2024-03-21
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1.2

Optimization Process

° Note that for any particular Generation, only a subset of the CPU classes may be
available

* M Series: All Mx Generations, starting with M1 Generation
* A Series: All Ax Bionic chips, starting with A14 Bionic chips
* Apple silicon: M Series and A Series

Optimization Process

Prior to pursuing optimization, set performance goals and measurement strategies.
Performance goals may be absolute, such as “n frames per second”, or relative, such as
"n% faster than previous generation with new features added”. Goals may be related to
throughput, such as “n transactions per second”, or to latency, such as "screen updated
in n milliseconds”. Goals may include managing outlier behavior, such as “no more

than n samples dropped per second”. Once goals are determined, implement one or
more effective methods to measure and track performance against the goal. Instrument
applications to self-measure and report performance. Use mach_absolute_time() library
function to measure time within applications.

To achieve high performance, consider two interrelated facets:

* Instruction Set Architecture (ISA): The ISA contains the commands that software
uses to accomplish tasks along with the environment in which those commands
execute. It includes instruction definitions, register sets, virtual memory organization,
memory model, and more. The ISA is commonly referred to as the hardware-software
interface. Broadly, choose instructions and instruction sequences to most efficiently
represent the desired functionality.

* Microarchitecture: The microarchitecture is the underlying hardware mechanism
that implements the ISA. It fetches the instructions from memory and executes
the operations, updating values in registers and memory. In order to achieve a
high performance implementation of the ISA, the microarchitecture executes many
instructions at the same time, even out of order with the specified program order,
but importantly preserving the appearance of single-stepped instruction execution.
Broadly, choose instruction patterns and use memory access patterns that optimally
use available microarchitectural resources, such as cache capacity, instruction type
bandwidth, and instruction latencies.

While distinct, the two facets are inexorably linked. For instance, the microarchitecture
may implement certain instructions or instruction sequences more efficiently orin a
more performant manner than others.

When considering options for performance improvement, generally pursue opportunities
in this order:

1. Apply compiler optimization: Enable general complier optimizations that will
optimize the code for the platform. For example, apply -03. "Debug" configurations
typically map to lower levels of optimization which results in less efficient code.

Use "Release" configurations to enable more optimizations. Enable the compiler to
use specific optimizations, transformations, or advanced instructions, many of which
are tuned for both the ISA and the microarchitecture. For example, apply -ffast-
math to allow the compiler to reorder floating point operations and use multiply-add

Copyright © 2024 Apple Inc. | 2024-03-21
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Optimization Process

fused instructions. (See Section 3.5.4, "Fused Op with Add/Accumulate Instructions
(Integer and ASIMDR&FP Types)".) Consider using Profile Guided Optimization (PGO)
and Link Time Optimization (LTO).

2. Leverage frameworks and libraries: Use platform-tuned frameworks and libraries
for common tasks. For example, use Accelerate's ZLIB, BLAS, and vDSP frameworks,
and Grand Central Dispatch for task management. (See Section 2.1, “Apple Platform
Technologies”, Section 5.4, "APIs for Synchronization and Thread Communication”,
and Section 2.1, "Apple Platform Technologies") And, for example, use the platform's
memcpy ( ) routine for copying blocks of memory.

3. Profile code using Instruments to identify the time consuming routines and
algorithms: If optimizing existing code, and before investing in further optimization
steps, profile the code using Instruments. Focus efforts on the routines and data
structures where the processor is spending the most time. It is common to find
unexpected "hot" routines. (See Chapter 6, Performance Monitoring)

4. Design data structures and algorithms for performance, and decorate data:
Explore options for efficient storage and location of information. For example, use
a tree structure instead of a linked list where appropriate. Also, decorate data to
provide hints to the compiler. For example, use const, restrict, pragma unroll,
and pragma vectorize. Details can be found in the Clang Language Extension
guide.

5. Develop custom code sequences using intrinsics, leveraging the full
Instruction Set Architecture (ISA), especially if the compiler will not vectorize:
Insert sequences of custom of code using intrinsics that map directly to processor
instructions. Use predefined data types via the <simd.h> or <arm neon.h> header
files that map directly to processor register types. (See Section 2.1, “Apple Platform
Technologies” and Section 3.4, “"Compiler Intrinsics for Instructions and Data Types")

6. Adjust algorithms for better caching: Consider data working set sizes and use
data in patterns that leverage caches for fast data access. Ensure prefetchable
patterns and selectively include software prefetches. (See Section 4.6.3, “L1 Data
(L1D) Cache" and Section 4.6.12, "Prefetching”)

7. Optimized for the Microarchitecture, tuning for maximum throughput:
Use performance monitoring events in Instruments to identify inefficiencies.
Carefully craft code sequences to achieve maximum execution throughput
based on microarchitectural characteristics. (See topics across Chapter 4, Core
Microarchitecture Optimization)

This guide covers aspects of each of the optimizations steps, with a focus on the
processors themselves and on the more detailed optimization opportunities. It is
structured according to the two facets, ISA then Microarchitecture. In cases where

the topics are best covered by other documentation, such as higher level software
constructs or tool references, links are provided. Before delving into the more detailed
opportunities, first consider whether better algorithms, automation, and tuned libraries
can help achieve performance goals.

Copyright © 2024 Apple Inc. | 2024-03-21
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High Magnitude and/or High Applicability Recommendations

1.3

1.4

Recommendation: Set Performance Goals to Focus Optimization Effort:

[Magnitude: High | Applicability: High] Develop performance goals and
methods for evaluating performance against those goals. Objectives may include
throughput, latency, and outlier behavior targets for whole applications or
portions of applications. Goals focus optimization effort on the opportunities that
matter.

High Magnitude and/or High Applicability
Recommendations

While there are many potential optimization opportunities, consider these High
Magnitude and/or High Applicability items:

Set Performance Goals to Focus Optimization Effort: Section 1.2, “Optimization
Process”

Explore Platform Technologies and Libraries for Optimized Common Functions and
Algorithms: Section 2.1, “"Apple Platform Technologies”

High IPC Does Not Necessarily Mean High Performance. Improve the Fundamental
Algorithm or Implementation of the Algorithm: Table 4.10

Use Barrier Instructions to Enforce Memory Ordering Due Weakly Ordered Memory
Model: Section 2.12, "Memory Model, Barriers, and Synchronization”

Use Intrinsic Functions to Manually Vectorize the Core Algorithm in High-Level
Languages: Section 3.4, “Compiler Intrinsics for Instructions and Data Types"”

Use Op-Add (e.g., Multiply-Accumulate) to Increase Code Density and Reduce
Latency: Section 2.11, “Fused Op with Add/Accumulate Operations (Integer Unit)"

Reduce Taken Branch Density to Improve Instruction Fetch Bandwidth: Section 4.4.4,
"Taken Branch Reduction”

Use Conditional Instructions to Reduce Branch Mispredictions: Section 4.4.5,
"Conditional Branch Mispredicts and Conditional Instructions”

Avoid False Sharing by Allocating Independent Shared Variables to Different 128B
Cachelines: Section 4.6.6, "Improving Cache Hierarchy Performance”

Pack Hot Variables into the Smallest Set of Cachelines for Improved Cache Hierarchy
Performance: Section 4.6.6, “Improving Cache Hierarchy Performance”

Query sysctl Parameters for Determining ISA Feature Support and Microarchitectural
Characteristics: Appendix B, Dynamic Determination of Chip-Specific Capabilities

Branch Terminology

Many analyses and recommendations involve instructions that alter the control flow
of the application. Those discussions rely on these definitions which reflect the
characteristics of the Arm v8.5 AARCHG64 ISA (see Section 2.2, "Arm AARCHG4 ISA"):

Target Address: The next Program Counter (PC) address specified by a control flow
altering instruction.

Copyright © 2024 Apple Inc. | 2024-03-21
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* Direct Branch: A control flow altering instruction where the target address is
specified in the instruction itself as an offset from the current PC.

* Indirect Branch: A control flow altering instruction where the target address is read
from a register.

* Call Branch (Call Instruction, Branch with Link Instruction): A control flow
altering instruction used for entering a subroutine. The PC+4 address is written to
a specific register, x30. Some call branches are indirect where the target address is
read from a register.

* Return Branch (Return Instruction): A special case of an indirect branch used for
returning from a subroutine. In the Arm ISA, the target address is obtained from a
specific register, x30.

* Unconditional Branch: A control flow altering instruction where the next PC is
always the Target Address. Note that in the Arm v8 ISA, all indirect branches are
unconditional.

* Conditional Branch: A control flow altering instruction where the next PC is the
Target Address or the current PC+4, depending on evaluation of a condition.

* Fall Through Branch / Skip Branch: A conditional branch with a FALSE condition.
The PC is not updated to the Target Address but rather continues sequentially to
PC+4.

* Taken Branch: An unconditional branch or a conditional branch with a TRUE
condition. The PC is updated to the Target Address.

* Predicted Branch: A branch for which the processor will make an "educated
guess" as to the condition and/or target address of the branch. The processor
will begin fetching instructions after fetching a branch according to the prediction.
The processor will check the prediction against the actual outcome when the
branch executes. Generally, all branches are predicted with the exception of direct
unconditional branches.

* Correctly Predicted Branch: A predicted branch for which the actual outcome
matches that of the prediction.

* Mispredicted (Incorrectly Predicted) Branch: A predicted branch for which the
actual outcome does not match the prediction. Instructions fetched after the branch
must be flushed from the machine.

* Correct Path: The stream of instructions that follow a predicted branch according to
the correct outcome of the branch. For a conditional branch, the stream may start on
either the Target Address or PC+4 depending on the actual outcome. For an indirect
branch, the stream will start on the correct Target Address.

* Wrong (Incorrect) Path: The stream of instructions that follow a predicted branch
according to an incorrect outcome of the branch. For a conditional branch, the stream
may start on either the Target Address or PC+4 depending on the actual outcome. For
an indirect branch, the stream may start on an incorrect Target Address.

* Retired Branch: A branch that executes on the correct path and is committed to
program state. Such a branch may be correctly or incorrectly predicted, that is, the
next instruction in the predicted stream may be on the correct or wrong path.

Copyright © 2024 Apple Inc. | 2024-03-21
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1.5

1.6

Performance Monitoring Events

* Biased Branch: A branch that has a highly consistent outcome. For a conditional
branch, execution is predominantly taken or is predominantly fall through. For an
indirect branch, the target is predominantly the same target address.

* Highly Predictable Branch: A branch where the processor's prediction algorithms
are highly likely to pick the correct outcome, and hence the processor is highly likely
to fetch instructions along the correct path.

Performance Monitoring Events

Performance Monitoring Unit (PMU) Events provide insight into processor behavior.
These events are denoted <Ev event_name> such as <Ev L1D_TLB_MISS_NONSPEC->.
These events are available via the Instruments profiling application. See Chapter 6,
Performance Monitoring for information about the Instruments application and for a list
of available events and their definitions.

Decimal and Binary Data Quantities

This document uses the conventions specified in Section 2.5 of the January 1972 |IEEE
Recommended Practice: Rules for the Use of Units of the International System of Units
standards document for decimal data quantities representation and Section 3 of the Mar
2008 |IEEE Standard for Prefixes for Binary Multiples standards document for binary data
quantities representation.

Table 1.1. Decimal and Binary Data Quantities

Factor Name Symbol Definition

103 kilo Byte kB 103 = 1,000 Bytes

210 kibi Byte KiB 210 = 1,024 Bytes

108 mega Byte MB 108 = 1,000,000 Bytes

220 mebi Byte MiB 220 = 1,048,576 Bytes

10° giga Byte GB 109 = 1,000,000,000 Bytes

230 gibi Byte GiB 230 = 1,073,741,824 Bytes

10712 tera Byte B 10"2 = 1,000,000,000,000 Bytes
240 tebi Byte TiB 240 = 1,099,511,627,776 Bytes

Note that in general, bandwidths are calculated in decimal quantities (e.g., MB/s),
whereas memory sizes and footprints are calculated in binary quantities (e.g., MiB).
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16


https://ieeexplore.ieee.org/document/7407561
https://ieeexplore.ieee.org/document/7407561
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5254933

Chapter 2. ISA Optimization: Overview &
Integer Unit

2.1

The following chapter describes aspects of the processor's Instruction Set Architecture.
However, before coding and tuning custom software, explore the optimized universally-
installed frameworks and libraries provided for common data types, functions, and
algorithms.

Apple Platform Technologies

Xcode is Apple's integrated development environment (IDE). It offers developers access
to a large number of optimized universally-installed platform technologies that include
data types, library classes and functions, and services for many common tasks. Prior to
writing custom code, explore the provided tuned technologies to speed development.

* Accelerate: Of particular interest, the Accelerate framework consists of routines
for neural networks (BNNS), image and video processing (vimage), digital signal
processing (vDSP), transcendentals (vForce), and linear algebra (Sparse Solvers,
BLAS, and LAPACK). Outside of Accelerate, Xcode offers multithreaded compression
functions (Apple Archive), compression algorithms for LZFSE, LZ4, LZMA, and ZLIB
(Compression), and small vector and matrix operations (simd).

* simd: The simd module provides basic data types and simple functions related to
small vectors and matrices.

* Grand Central Dispatch and Background Task: The Grand Central Dispatch
framework and Background Task framework provide support for scheduling tasks.
Also see Chapter 5, Asymmetric Multiprocessor (AMP) Optimization

* Many Other Technologies: For example: Core Image, Core Media, Create ML, Image
I/O, ML Compute. Use the Metal framework for rendering advanced 3D graphics and
performing data-parallel computations using graphics processors.

* memcpy (): Use highly tuned memcpy () for copying blocks of data.

Recommendation: Explore Platform Technologies and Libraries for
Optimized Common Functions and Algorithms:

[Magnitude: High | Applicability: High] Xcode provides developers access
to tuned libraries of mathematical data types, functions, and algorithms. These
algorithms are optimized for the available hardware and offer the most portable
solution between Apple products and generations. Before developing custom
solutions, explore the Accelerate and other platform technologies. They may
speed both development time as well as application performance without the
need for extensive custom code.
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Arm AARCHG4 ISA

Apple silicon CPUs support the Arm A-Profile 64b (AARCH64) ISA. The cores do not
support AARCH32 nor ISA prior to Arm v8.0. When used, the term "Arm ISA" refers to
Arm AARCH®64 v8.

2.2

All Apple silicon CPUs documented in this guide (see Section 1.1, “Generation and Series

Arm AARCHG64 ISA

Naming Conventions")x support floating point, floating point half precision converts,
Advanced SIMD, and the CRC32 instruction.

Table 2.1 lists the base Arm ISA version and supported ELO (unprivileged, colloquially
"user code") features, base and optional, for each CPU.

Software can dynamically check for the existence of the features via the sysctl
interface. See Appendix B, Dynamic Determination of Chip-Specific Capabilities for

details.

Table 2.1. Supported Arm Base ISA and ELO Features

18

Feature Description [Clang ISA Extension CPU Support

S EIUEL M1 Gen. M2 Gen. M3 Gen.
A14 Bionic A15 Bionic A16 Bionic
Base ARM ISA v8.5 (excluding|v8.6 v8.6
FEAT_BTI)

FEAT_AES Advanced SIMD AES instructions Yes Yes Yes

FEAT_AFP Alternate floating-point behavior No No Yes

FEAT_BF16 Storage and arithmetic instructions of the |No Yes Yes
Brain Floating Point (BFloat16) data
type [b£16]

FEAT_BTI Instructions to guard against the No Yes Yes
execution of instructions that aren’t the
intended target of a branch

FEAT_DPB Clean data cache by address to Point of |Yes Yes Yes
Persistence DC CVAP instruction

FEAT_DPB2 Clean data cache by address to Point of |Yes Yes Yes
Deep Persistence DC CVADP instruction

FEAT_DotProd |Advanced SIMD Int8 dot product Yes Yes Yes
instructions

FEAT_ECV Support for Enhanced Counter No Yes Yes
Virtualization, which enhances the
Generic Timer architecture

FEAT_FCMA Floating-point complex number Yes Yes Yes
instructions

FEAT_FHM Floating-point half-precision multiplication|Yes Yes Yes
instructions

FEAT_FlagM Condition flag manipulation instructions |Yes Yes Yes

FEAT_FlagM2 |Enhancements to condition flag Yes Yes Yes
manipulation instructions

FEAT_FP16 General half-precision floating-point data |Yes Yes Yes
processing instructions
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Table 2.1. Supported Arm Base ISA and ELO Features (cont.)

Arm AARCHG64 ISA

Feature Description [Clang ISA Extension CPU Support
Name] M1 Gen. M2 Gen. M3 Gen.
A14 Bionic A15 Bionic A16 Bionic
FEAT_FRINTTS |Floating-point to integral valued floating- |Yes Yes Yes
point number rounding instructions
FEAT_ISBMM Advanced SIMD Int8 matrix multiplication |No Yes Yes
instructions [i8mm]
FEAT_JSCVT |JavaScript conversion instruction Yes Yes Yes
FEAT_LRCPC |Load-acquire Release Consistency Yes Yes Yes
processor consistent (RCpc) instructions
FEAT_LRCPC2 |Load-acquire Release Consistency Yes Yes Yes
processor consistent (RCpc) instructions
version 2
FEAT_LSE Atomic instructions to support large Yes Yes Yes
systems
FEAT_LSE2 Changes to single-copy atomicity and Yes Yes Yes
alignment requirements for loads and
stores for large systems
FEAT_PMULL |Advanced SIMD PMULL instructions Yes Yes Yes
FEAT_RDM Advanced SIMD rounding double multiply |Yes Yes Yes
accumulate instructions
FEAT_RPRES |Increased precision of Reciprocal Estimate|No No Yes
and Reciprocal Square Root Estimate
FEAT_SB Barrier instruction to control speculation |Yes Yes Yes
FEAT_SHA1 Advanced SIMD SHAT1 instructions Yes Yes Yes
FEAT_SHA256 |Advanced SIMD SHA256 instructions Yes Yes Yes
FEAT_SHA3 Advanced SIMD SHA-3 instructions Yes Yes Yes
FEAT_SHA512 |Advanced SIMD SHA512 instructions Yes Yes Yes
FEAT_SSBS Instructions to control speculation of loads|Yes Yes Yes
and stores

The Clang compiler can automatically enable the appropriate set of ISA features for

a given chip by using the -mcpu option, such as -mcpu=apple-ml. To see the list of
chips available in an installed version of the compiler, use clang --print-supported-
cpus. The ISA feature set enabled by a specified chip can be modified with +/-

Clang ISA Extension Name, such as -mcpu=apple-ml+bf16. Use chip apple-latest
only in rare circumstances. It maps to a particular CPU that may change from one
compiler generation to the next, to one that may be newer than your CPU, and contain
features that are not yet fully stable. Further, when changing compilers, it could lead to
inconsistency in ISA version between individual files.

Note, though, that specifying a newer chip for a whole application may prevent it
from running on an older chip. Instead, provide multiple code paths for small sections
of performance critical code and dispatch the preferred path based on the dynamic
checking strategy mentioned above.
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2.3

2.4

Arm Reference Documents

Arm provides numerous reference and technical documents about the ISA, including
these relevant topics:

A-Profile: https://developer.arm.com/architectures/instruction-sets/base-isas/a64

Arm Architecture Reference Manual: https://developer.arm.com/documentation/
ddi0487/latest

Advanced SIMD and FP ISA (also referred to as NEON): https://
developer.arm.com/architectures/instruction-sets/simd-isas/neon

Advanced SIMD and FP ISA high-level language Intrinsics: https://
developer.arm.com/architectures/instruction-sets/intrinsics/

Software ABI: https://developer.arm.com/architectures/system-architectures/
software-standards/abi Specifically "Procedure Call Standard for the ARM 64-bit
Architecture" and Advanced SIMD portions of "Vector Function Application Binary
Interface Specification for AArch64"

Memory Model: https://developer.arm.com/documentation/100941/0100/ARMv8-A-
Memory-systems

Virtual Memory Management: https://developer.arm.com/architectures/learn-the-
architecture/memory-management

ISA Characteristics

Considering the Instruction Set Architecture (ISA), the foundations of the Arm ISA
are similar to other ISAs. Commonalities include:

Rich instruction set: The Arm ISA is a rich instruction set architecture. It features

an extensive instruction library of both compiler targetable and special purpose
instructions. While the details may be subtly different, many operations found in other
architectures are available with the greatest differences being found in the Single
Instruction Multiple Data (SIMD) (which includes integer and floating point data types)
and floating point (FP) scalar instruction set.

Flexible memory address computation: The Arm ISA offers memory address
computation with up to two registers, an immediate value, and optional scaling.

Subset support for general purpose registers: General purpose registers are
accessible as full 64-bit registers or 32-bit subsets.

SIMD unit with both integer and floating point types, including subset scalar
options: Vector registers are accessible as single element scalars in floating point
types as well as both integer and floating point packed Single Instruction Multiple
Data (SIMD) full registers. The Arm ISA supports 16b half, 32b single, and 64b
double precision floating point types. Arm floating point technology is fully IEEE-754
compliant.

Status flags register: Process State (PSTATE) contains the ALU status flags.

Little-endian data format: While the Arm ISA offers some flexibility, Apple
implementations natively support little endian instructions and data.
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Non-temporal memory access instructions: Software can specify which data
items are likely to be used only once and therefore do not need to be cached.

Software prefetch: The Arm ISA offers the ability to specify data prefetches directly
in the software.

However there are characteristics to be aware of:

RISC load-store architecture: Aligned with Reduced Instruction Set Computing, the
Arm instruction set generally requires explicit load and store instructions to move

data in and out of registers. There are some exceptions, however, such as Compare
and Swap atomic instructions (ex., cas) and the Load-/Store-and-{operation} atomic
instructions (ex., LDSMIN/STSMIN).

32b fixed length instructions: Arm instructions are always 32b in length and are
always 4B aligned. Fixed instruction lengths make the processor simpler and more
efficient. However, most of those 32b are used for encoding the operation and
operand specifiers, leaving limited remaining bits for immediate values.

° Limited immediate bit range for offsets and constants: Sequences of
instructions may be required to build constants or offsets from immediate
fragments. Alternatively, constants or offsets can be loaded from memory using
PC-relative addressing, which allows larger immediate offsets. (Section 2.8,
"Addressing Forms, Instruction Immediates, and Operand Shifts")

128b ASIMD&FP unit vector registers : Vector registers are 128b in length. These
registers support scalar and packed 64b, 32b, and 16b-sized floating point values and
packed 64b, 32b, 16b, and 8b-sized integer values. The Arm ISA does not support
80b extended floating point precision.

Separate source and destination registers (i.e., non-destructive operations):
Arm instructions typically specify a destination register separate from the source
register(s). In other ISAs, one of the source registers is often also the destination
register. As a side benefit of separate destination registers, fewer move operations
are typically required to preserve registers values before using them as source/
destination. (Section 2.7, “"Separate Source and Destination Registers ")

Register-based subroutine return addresses: Arm subroutine calls write the return
address into a special general purpose "link" register, and subroutine returns read the
return address from the same register. The Arm approach offers more flexibility than
approaches that directly use the memory stack, especially for leaf functions where
writing to the stack may be unnecessary. However, additional instructions may be
required to move the return value to the memory-based stack when needed.

Weakly ordered memory model: The Arm ISA employs a weakly ordered memory
model where software executes specific instructions to preserve ordering only when it
matters, generally improving memory performance over stricter ordering such as Total
Store Ordering. (Section 2.12, “Memory Model, Barriers, and Synchronization”)

Synchronization required for self-modifying code: Cores may not immediately
observe modifications to instruction memory. To implement self-modifying code
(SMC) or just-in-time (JIT) compiled code, software must execute specific
synchronization instructions. While somewhat more complicated for software, it leads
to more efficient processor implementations since the processor does not have to
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2.5

2.6

constantly monitor for updated instruction bytes. (Section 2.13, “Self-Modifying or
JIT-Generated Code Deployment”

Syntax

Arm instructions follow a common syntax. For a complete description, see the Arm
Architecture Reference Manual Chapter C1.2. Some common elements include:

* { }: Anyitem enclosed by curly brackets is optional.

* [ 1:Anyitems enclosed by square brackets constitute a list of alternative characters.
In some case the square brackets are part of the syntax itself, such as addressing
modes or vector elements.

* a|b: Alternative words are separated by a vertical bar and can be surrounded
by parentheses to delimit them. For example, U(ADD | SUB)W represents UADDW Or
USUBW. (S |U) commonly indicates signed or unsigned (zero) extension. (W|H|B|X)
commonly indicates extension base size.

* #: Optional character to introduce a constant immediate operand.
* immn: An immediate value.

* (LSL|LSR|ASR): A operand shift specification. See Section 2.8, "Addressing Forms,
Instruction Immediates, and Operand Shifts”.

* *XT+*: A operand extension specification. See Section 2.8, "Addressing Forms,
Instruction Immediates, and Operand Shifts".

In some examples, register sizes are denoted on the instruction mnemonic instead
of repeated on each operand. See Section 2.6, "Registers”.

In some examples, intrinsic functions are used in high-level languages instead of
instruction mnemonics. See Section 3.4.2, “Computation Intrinsics: A General Guide”

Registers

The Arm ISA uses registers to hold values for processing, and most instructions require
explicit source and destination registers. In some cases, specific register sizes or
vector element organizations will be required. For a complete description, see the Arm
Architecture Reference Manual Chapter C1.2. For information on parameter passing
conventions, see Writing Arm64 Core for Apple Platforms.

Relevant registers, sizes, and organizations include:

Program Counter (pc): Register that holds the virtual address of the current
instruction. Software cannot write directly to the PC. It can only be updated on a branch,
exception entry, or exception return.

General Purpose Registers (rn): The 31 general purpose registers (0-30) used for
general purpose computation. The general purpose registers and related instructions
are often simply referred to as "integer" registers and instructions. In a general-purpose
register field, the value 31 represents either the current stack pointer or the zero register,
depending on the instruction and the operand position. Note that R30 serves as the link
register for procedure calls.

Size qualified names for the general purpose registers are:
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* wm: The 32b subset of Rm

* xn: The full 64b version of rRn

* wZR: The 32b zero register

* XZR: The 64b zero register

* wsp: The 32b stack pointer (unused on Apple silicon)
* xsp: The 64b stack pointer

When the data size is 32 bits, the lower 32 bits of the register are used. The upper 32
bits are ignored on a read and cleared to 0 on a write.

The ARM standard allows certain decisions to be made by the platform designers. Apple
platforms adhere to the following choices:

* The platform reserves register x18. Do not use this register.

* The frame pointer register (x29) must always address a valid frame record. Some
functions — such as leaf functions or tail calls — may opt not to create an entry in this
list. As a result, stack traces are always meaningful, even without debug information.

ASIMD&FP Registers (vn): The 32 Advanced SIMD and floating point registers (0-31)
used for scalar floating point as well as integer and floating point SIMD computation.
The ASIMD&FP registers and related instructions are often simply referred to as "vector"
registers and instructions, hence the "V" notation. In the context of this document, the
term vector does not imply only SIMD operations. It also includes scalar operations that
use the same registers and datapath. Compiler intrinsic data types for these registers
are described in Section 3.4, “Compiler Intrinsics for Instructions and Data Types".

Scalar names for ASIMD&FP registers are:
* Bn: 8b scalar subset name of vn

* Hn: 16b scalar subset name of vn

* sn: 32b scalar subset name of vn

* Dn: 64b scalar subset name of vn

* on: 128b scalar name of vn

SIMD and floating point instructions that operate on scalar data only access the lower
bits of a SIMD and floating point register. The unused high bits are ignored on a read and
cleared to 0 on a write.

Operations that operate on vector registers often require an organization, that is, an
element size multiplied by the number of elements, such as:

* vn.8B: 8b x 8 lanes vector organization of vn

For a full description of the vector registers and organizational options, see Section 3.1,
“Advanced SIMD and FP Data Types".

The element size (in bits) multiplied by the number of elements (lanes) must equal either
64 or 128. Then 64b, the upper 64 bits of the register are ignored on a read and cleared
to zero on a write.

For many instructions, the source and destination vector registers share the same
(element size, lanes) specification. Apple assemblers and disassemblers use a simplified
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coding scheme where the registers are named generically, such as vn, and the (element,
lanes) specification is attached to the instruction mnemonic instead. For example, the
following are equivalent:

ADD V2.4S, V3.4s, V4.4S
ADD.4S V2, V3, V4

Note: This simplified scheme of attaching the vector register organization to
mnemonic instead of each operand is not part of the Arm notation, but some
examples use it to improve readability.

In cases of mismatched (element size, lanes) specifications between sources and
destinations, Apple assemblers will apply the specification attached to the instruction
mnemonic of the destination.

Process State (psTATE): The register that holds the contents of the arithmetic flags:
Negative Condition (N), Zero Condition (z), Carry Condition (c) and Overflow Condition
(v). Note though that the Carry Condition (C) in the Arm ISA has opposite semantics
during subtraction compared with other ISAs.

2.7 Separate Source and Destination Registers

Arm instructions typically specify a destination register separate from the source
register(s). Other architectures have a combined source/destination register. This
is often referred to as "destructive", as the source value is "destroyed" when the
instruction writes it's result.

In the Arm ISA, source registers are generally not automatically overwritten unless

the destination register explicitly matches the source register. As a side benefit, few
move operations are required to preserve registers values before using them as source/
destination.

For example, a basic "Add (register)" takes a destination register xd as well as two
source registers xn and Xm:

ADD Xd, Xn, Xm // ([Xd] = [Xn] + [Xm])

Some ASIMD&FP operations even take 3 source registers along with a destination
register, such as "floating point fused Multiply-Add to accumulator":

FMADD Dd, Dn, Dm, Da // ([Dd] = [Da] + ([Dn] * [Dm]))

Note that some operations do exist in the ISA where a source/destination register is
specified, such as "Signed Absolute difference and Accumulate" that accumulate into a
register:

SABA Vd.T, Vn.T, vm.T // ([Vd] = [Vd] + ABS([Vn] - [Vm]))
// where T is the element organization

The Arm ISA generally denotes these source/destination registers just as destination
registers <*d> but the values will also be read as sources according to the instruction
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2.8

pseudocode. Instructions with a destination register that also serves as a source register
include:

* Bitfield Operations:
° BFM, BIT, BIF, BSL, SLI, SRI

* Add/Subtract/Shift/Multiply with Add/Accumulates: (see Section 3.5.4, “"Fused
Op with Add/Accumulate Instructions (Integer and ASIMD&FP Types)"

° SABA, SABAL, SADALP, SRSRA, SSRA
° UABA, UABAL, UADALP, URSRA, USRA
° FMLA, FMLS
° FMLAL(2), FMLSL(2)
° BFMLALB, BFMLALT
° MLA, MLS
° SMLAL(2), SMLSL(2), SQDMLAL(2), SQDMLSL(2)
° UMLAL(2), UMLSL(2)
° SQRDMLAH, SQRDMLSH
* Dot Products:
° UDOT, SDOT, USDOT, SUDOT, BFDOT
* Matrix Multiply:
° SMMLA, UMMLA, USMMLA, BFMMLA
* Partial Inmediate Moves:
° BIC (vector immediate), MOVK, ORR (vector immediate)

* Vector Table Lookup and Inserts: (see Section 3.5.7, “Shuffle and Permute
Instructions”

° TBX
* Vector Insert
° INS

* Second Half of Narrowing Operations: (see Section 3.3.16, “Narrow, Long, Wide:
N/L/W")

° FCVTN2, FCVTXN2, BFCVTN2

° ADDHN2, RADDHN2, RSHRN2, RSUBHN2, SHRN2, SQRSHRN2, SQRSHRUN2,
SQSHRN2, SQSHRUN2, SUBHN2, UQRSHRN2, UQSHRN2

° SQXTN2, SQXTUN2, UQXTN2, XTN2

Addressing Forms, Instruction Immediates, and
Operand Shifts

For memory addresses, the Arm ISA allows a 64-bit index register to be added to a
64-bit base register, with optional scaling of the index by the access size. Additionally
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it allows for sign-extension or zero-extension of a 32-bit value within an index register,
followed by optional scaling. It also supports PC-relative addressing. For a complete
description, see the Arm Architecture Reference Manual Chapter C1.3.

Leveraging these addressing modes improves code density by incorporating offsets
and scale factors directly into the memory instructions, instead of requiring a chain of
multiple instructions. However, some combinations result in additional microoperations
(uops) to update pointers, and in one case, an additional pop to calculate the address.
See Section 4.4.8, "Multi-pop Instructions” and Section 4.6.1, “Address Generation” for
more details.

The addressing modes have different ranges from the base register (or PC, in the case
of PC-relative addressing). Some offsets are signed and thus the range is centered on
the base address, whereas others are unsigned and the range extends only to higher
addresses from the base register. Some offsets are specified in number of bytes and
others are in number of elements. When elements, the encoded immediate is scaled by
the transfer size, but the assembly will still read bytes. The modes with their ranges and
example instructions are:

Table 2.2. Load and Store Addressing Modes

Addressing Mode / Form Immediate Example

Base Only None. Exclusive, Atomic, Acquire, Release
Address = base LDSET X1, X2, [XO0]
[base]

Base Plus Offset (immediate) 12b offset, Zero Extended, Single register operations

b .
[base{, #imm}] 9b offset, Sign Extended (-256 |Single register unscaled operations

to 255 bytes) LDUR X1, [XO, #-6]

7b offset, Sign Extended, Paired register operations

implied scale by transfer size

(-64 to 63 elements) LDP X1, X2, [X0, #-8]
Base Plus Offset (register) No offset. UXTWILSL|SXTW]| |[Single register operations

SXTX Extend, optional scale

X o LDR X2 X0, W1, UXTW
by transfer size specified as r [X0, !

Address = base + extended and

scaled reg offset amount #2|#3t #31]
[base, (W|X){,<xt> {amt}}]
Pre-indexed (immediate) 9b offset, Sign Extended (-256 |Single register operations
to 255 bytes
Address = base + imm offset ytes) LDR X1, [XO0, #8]!
Base updated with address 7b offset, Sign Extended, ' Paired register operations
implied scale by transfer size
[base{, #imm}]! (-64 to 63 elements). LDP X1, X2, [X0, #16]!
Post-indexed (immediate) 9b offset, Sign Extended (-256 |Single register operations
to 255 bytes)
LDR X1 X
Address = base D , [X0], #8
7b offset, Sign Extended, Paired register operations
Base updated with base + imm offset|implied scale by transfer size
(-64 to 63 elements). LDP X1, X2, [X0], #16
[base], #imm Offset must equal structure  |ASIMD&FP operations only
size
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Table 2.2. Load and Store Addressing Modes (cont.)

Addressing Mode / Form Immediate Example
LDl {Q1.16B,02.16B}, [X0], ¥32

Post-indexed (register) None ASIMD&FP operations only
Address = base LD1 {Q2.16B,0Q3.16B}, [X0], X1

Base updated with base + reg offset
[base], X

Literal (PC-relative) 19b offset, Sign Extended word |Single register operations
Address = label (4B) (-IMiB to TMiB-1bytes) |1 hp <y jteral>

label (converted to #imm)

tExtended register offsets: the memory address equals the sum of the base register
with the extended and scaled offset register. In most cases, several different assembly
annotations are allowed for the same operation. The extension is performed before the
shift.

* Zero extended 32b: Wwm, Or Wm UXTW, OFr Wm UXTW #0, OF Xm UXTW, Of Xm UXTW #0

* Zero extended 32b with scale by transfer size: Wm UXTW #2/#3, Or Xm UXTW #2/#3

* Sign extended 32b: Wm SXTW, Or Wm SXTW #0, OF Xm SXTW, Of Xm SXTW #0

* Sign extended 32b with scale by transfer size: Wm SXTW #2/#3, Or Xm SXTW #2/#3

* 64b: Xm, or Xm LSL #0, Or Xm SXTX, OF Xm SXTX #0

* 64b with scale by transfer size: xm LSL #2/#3, or Xm SXTX #2/#3
Recommendation: Use the LsL Option in Memory Addressing to Scale the
Second Register Operand by Transfer Size:

[Magnitude: Low | Applicability: High] Specify LsL. #<transfer size>to
scale the second register operation by the transferl size. This is often used to
convert an array index to an array byte offset.

General-purpose arithmetic (ALU) instructions can calculate the result of most
addressing modes and write the address to a general-purpose register. The Base Only,
Base Plus Offset (immediate), Base Plus Offset (register), and Literal (PC-relative) are
available.

With regard to extended register mode, the ALU instructions support 1B (B) and 2B (H)
base sizes in addition to the 4B (W) and 8B (X) base sizes supported by the memory
instructions: (s|u)xT(w|H|B|X). Further, the shift amount is a 3b value that can be set
between 0 and 4, rather than just to the transfer size.

Last, a more flexible shifted register form is available with a shift amount from 0-63
for the following shift types: L.sL (Logical Shift Left), Lsr (Logical Shift Right), and Asr
(Arithmetic Shift Right).

For example:
* ADD (immediate): ADD Xd|SP, Xn|SP, #imm{, shift}
* ADD (shifted register): AbD Xd, Xn, Xm{, shift #amount}
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2.8.1

* ADD (extended register): AbD Xd|SP, Xn|SP, Rm{, extend {#amount}}

Recommendation: Use Immediate Values as Shift Amounts Applied to the
Second Register Operand to Replace Multi-Instruction Sequences:

[Magnitude: Low | Applicability: Medium] Where possible, use the implicit
shift functionality available in various instructions to avoid a separate shift
instruction.

Avoid Chains of Pre- and Post-Indexed Operations

Pre- and post-indexed instructions compress two operations into one instruction and
are useful for improving code density. However, executing a chain of pre-indexed or
post-indexed memory operations is also inefficient because each instruction includes a
separate update of the address register, making subsequent instructions dependent on
prior instructions. For example, the load into X2 cannot begin until X0 is updated by the
load into x1.

LDR X1, [X0], #8
LDR X2, [X0], #8
LDR X3, [X0], #8
LDR X4, [X0], #8

Instead, make a single update to the address register either through a dedicated app
or suB instruction or though a single pre-/post-indexed memory operation, along with
additional memory operations using base plus immediate addressing.

LDR X2, [X0, #8]
LDR X3, [X0, #16]
LDR X4, [X0, #24]
LDR X1, [X0], #32

Note that base plus immediate offset for single registers offers only an unsigned positive
offset range. Therefore when accessing a sequence of elements, access the elements
from the original pointer first, before advancing the pointer.

Stack push and pop operations can be naively translated into pre-indexed and post-
indexed addressing modes. The Arm equivalent of a push operation to a stack that
grows down toward 0 is STR Xn, [XSP, #-8]1! which first decrements the stack pointer
by the operand size, then stores the value to the computed address, and finally updates
the stack pointer with the computed address. The Arm equivalent of a pop operation is
LDR Xn, [XSP], #8 which first loads the value from stack pointer address, then adds
the operand size to the stack pointer, and then updates the stack pointer. However,
rather than using a sequence of pre-indexed and post-indexed memory operations, use
a single pre-indexed store to allocate all of required the stack space and write the first
value, followed by base plus offset stores. Similarly, read all but the last of the values off
of the stack with base plus offset loads, followed by a final post-indexed load that also
deallocates the stack space.

Further, use load and store pair instructions (.pp and sTp), which read from two
sequential locations in memory into two registers and write to two sequential locations in
memory from two registers. Use of these instructions increases code density.
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# start of function

STP X28, X27, [XSP, #-96]!
STP X26, X25, [XSP, #16]
STP X24, X23, [XSP, #32]
STP X22, X21, [XSP, #48]
STP X20, X19, [XSP, #64]
STP X29, X30, [XSP, #80]
# function body

LDP X29, X30, [XSP, #80]
LDP X20, X19, [XSP, #64]
LDP X22, X21, [XSP, #48]
LDP X24, X23, [XSP, #32]
LDP X26, X25, [XSP, #16]
LDP X28, X27, [XSP], #96
RET X30

Constant Generation

The Arm Application Binary Interface (ABI) states that stacks grow downward toward

0. Further, a process may only store data in the closed interval of the entire stack
delimited by [SP, stack base - 1]. Therefore, when applying the optimization above,
allocate space on the stack first with an arithmetic operation (or along with the first
store), and deallocate the space last after the last load (or along with the last load). See
Writing Arm64 Code for Apple Platforms for a discussion of the Arm ABI.

Constant Generation

Recommendation: Use a Single Pre- or Post-Indexed Pointer Adjustment

Operation Per Sequence of Stores or Loads:

[Magnitude: Medium | Applicability: Medium] Avoid sequences of pre- or
post-indexed stores or loads because the chain of address updates creates
unnecessary register dependencies. For sequential memory locations, access
data through base plus positive immediate offsets before adjusting the pointer
at the end of the sequence. For stack operations, use either a pre-index store
operation or an ApD or sUB at the beginning of a push sequence to allocate
needed stack space. Use either a post-index load operation or an AbD or SUB at

the end of a pop sequence to deallocated unneeded stack space.

A common practice with the Arm ISA is to store constants within binaries using small
data blocks placed into the code pages where space allows — for example, in between
functions. The values can be loaded into registers using nearby PC-relative loads. This
can be a good strategy because it minimizes code size: a single instruction can load a
full-sized constant value.

However, short sequences of move, logic, and shift instructions may be advantageous:

» 16-bit MOV instructions: Many constants are small and can easily be encoded

into the 16b immediate fields available in the "wide immediate" Movz, MOVN, and MOVK
instructions. Of note, the MOVK instruction accepts a 16b immediate, optionally shifts the
immediate 16, 32, or 48 bits to the left, and merges it with the existing value in the
destination register. To create a 64b constant 0x0123456789ABCDEF in X1:

MOVZ X1,
MOVK X1,

#0123 LSL 48
#4567 LSL 32
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2.9

MOVK X1, #89AB LSL 16
MOVK X1, #CDEF

In this worst case of needing 4 moves, the sequence executes with the same latency as
the alternative load operation; see Section A.3.1, “Load Latency"”. In most cases, fewer
then 4 instructions are needed and the throughput and latency are better than what one
can achieve with loads.

» Better cache performance: Constant values obtained through loads must be read
from the data cache, even though they are within the instruction code space. This
results in some redundancy between the caches as portions of the code space must be
loaded into the data cache. More critically, the "islands” of data within the instruction
code space are not automatically prefetched by the instruction-side prefetcher. And,
they are hard for the data-side prefetchers to prefetch effectively because they are
scattered randomly throughout the code space. This will typically result in at least one
or more data cache misses for each new "island” of immediate data that is accessed.

In contrast, the few extra move operations will be naturally fetched as part of the code
sequence.

« Fast Constant Generation: In some cases, the processor can leverage the Fast
Constant Generation feature if specific coding rules are followed. This reduces the
latency and execution bandwidth required for these operations. See Section 4.5.3.3,
"Register Constants”.

Recommendation: Use Short Sequences of ALU Operations to Construct
Constants:

[Magnitude: Low | Applicability: Medium] While creating a slight increase in
code size, use short sequences of moves, adds, and shifts to create constants.
This will improve latency, reduce pressure on the load execution units, and
leverage immediately handling features of the processor.

Long Address Generation

The Arm ISA requires a two-step instruction sequence to generate long distance PC-
relative addresses. ADRP adds a 21-bit signed immediate value to the page address
(sometimes referred to as page number) of the PC while clearing the bottom 12 bits.
This allows an address to be generated +/- 4 GiB from top of the current PC page.
ADRP is often followed by an ADD instruction with a page offset as an immediate value to
generate a full address. In many cases, the assembly will include a name instead of the
immediate values, which will be converted to immediate values by the linker.

000000000000132c ADRP X0, #0x84 ; 0x84000 + 0x001000
0000000000001330 ADD X0, X0, #0xa00 ; 0x85000 + 0x000a00

0x85000
0x85a00

Condition Codes

Branch and conditional instructions test psTATE . NzcV condition flags against condition
codes. Condition flags can be set by explicit comparison instructions, such as cMp and
FCMP, or certain arithmetic instructions, such as suBs.
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Table 2.3. Condition Codes

Mnemonic [Meaning (integer) Meaning (floating point) Conditional flags
extension

EQ Equal Equal Z==

NE Not equal Not equal, or unordered* Z==

CS/HS Carry set/Unsigned higher or same |Greater than, equal, or unordered? |C==

CC/LO Carry clear/Unsigned lower Less than C==

MI Minus, negative Less than N==

PL Plus, positive or zero Greater than, equal, or unordered? |[N==0

VS Overflow Unorderedt v==1

vC No overflow Not unorderedt V==

HI Unsigned higher Greater than, or unorderedt C==1and z==
LS Unsigned lower or same Less than or equal C==0or zZ==
GE Signed greater than or equal Greater than or equal N==V

LT Signed less than Less than, or unordered? N!=V

GT Signed greater than Greater than Z==0 and N==V
LE Signed less than or equal Less than, equal, or unordered* Z==1orN!=V
AL /NVtt |Always (unconditional) Always (unconditional) Any

tUnordered means at least one NaN operand.

t*The Nv condition code does not appear in the Arm Architecture Reference Manual,
however some assemblers accept it. While the Nv condition code implies "Never" and
is encoded to suggest inverted AL "Always", the behavior of NV is equivalent as AL
which is "always taken". See shared/functions/system/ConditionHolds () shared
pseudocode in the Arm reference manual.

2.10 Conditional Instructions

The Arm instruction set offers a number of instructions that modify register values
depending on a condition. See Section 4.4.5, “Conditional Branch Mispredicts and
Conditional Instructions” for a list of these instructions and recommendations on when
to employ them.

2.11 Fused Op with Add/Accumulate Operations (Integer
Unit)

The Arm ISA offers a limited set of "fused" instructions that combine an operation with
an add or accumulate. For example, MADD (Multiply-Add) multiplies two register values,
adds a third register value, and writes the result to the destination register.

The benefits are similar to the Advanced SIMD Fused Op with Add/Accumulate
Instructions and both are detailed jointly in Section 3.5.4, "Fused Op with Add/
Accumulate Instructions (Integer and ASIMD&FP Types)”.
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Memory Model, Barriers, and Synchronization

Almost all ELO instruction and data bytes reside in Arm "normal" type memory. Normal
memory employs a "weakly ordered" memory model. While a thread's own loads and
stores will appear ordered from within that thread, both loads and stores may be
reordered with respect to other processors and system memory in order to optimize
latency and bandwidth. When ordering is needed for specific regions of code, barrier
instructions are available to guarantee ordering.

Apple silicon offers additional memory types for specific uses with different memory
ordering properties. Given their narrow uses, they are beyond the scope of this
document.

For more information on Arm memory types, weakly ordered memory, and barriers, see
ARMv8-A Memory Systems".

Arm offers further examples of barrier behavior in Appendix K11 "Barrier Litmus Tests" in
the Arm Architecture Reference Manual.

Last, see topics in Chapter 5, Asymmetric Multiprocessor (AMP) Optimization that
discuss APIs for inter-thread communication and thread checking.

Recommendation: Use Barrier Instructions to Enforce Memory Ordering
Due to Weakly Ordered Memory Model:

Use inter-thread communication APIs where possible. When writing custom
code, if any particular memory ordering is required, use barrier functionality

to ensure ordering. In addition to bMB and DsB instructions, other instructions
may optionally include the same barrier functionality, such as LDREX/STREX, load-
acquire, store-release, and atomics.

[Magnitude: High | Applicability: Low]

Self-Modifying or JIT-Generated Code Deployment
MacQOS Only:

Self-modifying code and just-in-time generated code are techniques where software
modifies or generates code by writing instruction words as data to memory and then
fetches them back as instructions. In the Arm ISA, writes to instruction memory by data
stores won't naturally be seen by the Instruction Fetch Unit until the instructions are
re-fetched from memory. This typically happens only when the existing bytes are first
flushed from the instruction cache due to non-use or due to an explicit flush operation.
To facilitate this, the Arm ISA offers data and instruction barriers and other cache
maintenance instructions that must be executed in a specific sequence to ensure that
bytes have been written to memory before the Instruction Fetch Unit attempts to read
them. By their nature, some of these instructions are privileged and cannot be executed
from user code.

Apple offers APIs to enable dynamic code generation. See Porting Just-In-Time
Compilers to Apple Silicon guide for more information.
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214

ISA Characterization

Recommendation: Avoid Frequent JIT-Generated Code and Carefully

Follow Prescribed Steps:

Self-modifying or JIT-generated code requires executing several steps to ensure
the new code is visible to the instruction fetch unit in the processor. One step
includes invalidating the instruction cache, which will evict other useful cached
instructions. Avoid frequent code deployment, and hence frequent instruction

cache invalidations, as much as possible

[Magnitude: Low | Applicability: Low]

ISA Characterization

Broad bucket characterization of ISA usage is available through the following metrics.

Table 2.4. Common Instruction Mix Metrics

Name and Formula

(Event Definitions: Section 6.2, “Performance Monitoring
Events")

Description

Branch Density*:
<Ev INST_BRANCH> / <Ev INST_ALL>

Proportion retired branch instructions (including calls
and returns) of all retired instructions

Integer Operation Density:

<EV INST_INT_ALU> / <Ev INST_ALL>

Proportion retired integer execution instructions of all
retired instructions, excluding branches and memory
operations

Advanced SIMD and FP Operation Density:

<Ev INST_SIMD_ALU> / <Ev INST_ALL>

Proportion retired Advanced SIMD and FP execution
instructions of all retired instructions, excluding
memory operations

Advanced SIMD Operation Density:
<Ev INST_SIMD_ALU_VECTOR> / <Ev INST_ALL>

Proportion retired Advanced SIMD execution
instructions (including integer and floating point data
types) of all retired instructions, excluding memory
operations.

Note: Available on M2 Generation and following, and
A15 Bionic and following

Load and Store Density:
<EVINST_LDST> / <Ev INST_ALL>

Proportion retired load and store instructions of all
retired instructions

Integer Load Density:
<EVINST_INT_LD> / <Ev INST_ALL>

Proportion retired integer load instructions of all
retired instructions

Integer Store Density:
<EVINST_INT_ST> / <Ev INST_ALL>

Proportion retired integer store instructions of all
retired instructions

Advanced SIMD and FP Load Density:
<Ev INST_SIMD_LD> / <Ev INST_ALL>

Proportion retired Advanced SIMD and FP load
instructions of all retired instructions

Advanced SIMD and FP Store Density:
<EVINST_SIMD_ST> / <Ev INST_ALL>

Proportion retired Advanced SIMD and FP store
instructions of all retired instructions

Data Barrier Density:
<Ev INST_BARRIER> / <Ev INST_ALL>

Proportion retired data barrier (DSB, DMB)
instructions of all retired instructions
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tAdditional detailed branch instruction characterization is available in Table 4.6:
"Common Branch Instruction Mix and Direction Metrics".
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Chapter 3. ISA Optimization: Advanced SIMD
and FP Unit

Arm's Advanced SIMD and FP instructions and registers offer a wide range of operations
on scalar and packed data types in vector registers. Note that the Advanced SIMD
architecture, its associated implementations, and supporting software, are commonly
referred to as NEON technology, although Arm no longer uses that term broadly. This
section provides an overview of Advanced SIMD and FP capabilities, including data
types, mathematical operations, and specific instructions. It is not exhaustive. It is
designed to highlight key capabilities and present the Arm ISA versions of common

and important operations.

Typical operations executing in these pipelines can perform up to 16 parallel operations
at once down the length of each vector (with byte-wide operations). Operations

with larger data types reduce the number of parallel operations performed in inverse
proportion to the size of each data element. These effects are both illustrated

in Figure 3.1: “Standard Advanced SIMD Addition ADD (vector)"” which shows the
operations performed by typical vector addition operations. In addition, these pipelines
can perform scalar integer or floating point operations, using only the first (#0) element
of each vector instead of the entire vector width. There are only a few scalar integer
instructions that execute in the Advanced SIMD and FP pipelines given that Integer
Unit pipelines typically execute such instructions more efficiently and with lower latency.
Thus, scalar operations in the Advanced SIMD and FP Unit primarily operate on floating
point data types..

Because the integer pipelines can already handle most kinds of scalar integer operations
quite well, scalar Advanced SIMD instructions are primarily used for floating point
calculations.
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Figure 3.1. Standard Advanced SIMD Addition ADD (vector)

Vector bit 127 Vector bit 0
A) Byte (8-bit) Operations:

IA15|A14|A13|A12|A11 |A10| A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | Al | A0 I

Sources:
B15|B14|B13|B12|B11|B10| B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | BO I
|| [ ]| ]| ] ]| ] )]+
R It A15+| A14+|A13+|A12+ | A11+| A10+| A9+ | A8+ | A7+ | A6+ | A5+ | Ad+ | A3+ | A2+ | A1+ | A0+
esu . B15 | B14 | B13 | B13 | B11 | B10 | B9 B8 B7 B6 B5 B4 B3 B2 B1 BO

B) Halfword (16-bit) Operations:

[ A7 [ A6 [ A5 | A4 [ A3 | A2 | A1 | Ao |

Sources:
B7 B6 B5 B4 B3 B2 B1 BO I
YYYVYVYVVYVVYVYVVYVYYVY
D EDEDEDEDED D ED
Y V V V V V
Result:  [A7+B7|A6+B6|A5+B5|A4+B4|A3+B3|A2+B2|A1+B1]A0+Bo|

C) Word (32-bit) Operations:

| a3 | A | a | nr |
Sources: | | | |
B | B2 | B | BO
vy Y Y vy
) ) )
y y y y

Result: | As@3 | aA2«B2 | At4B1 | AcBO |

D) Doubleword (64-bit) Operations:

| Al | A0 |
Sources: | |
| B1 | BO |
Result: | A1+B1 | A0+BO |

3.1 Advanced SIMD and FP Data Types

Advanced SIMD and FP registers and operations support the following data types:
* |EEE 754 Floating Point Numbers

° Half precision (16b)

° "Brain" float precision (16b), with FEAT_BF16

° Single precision (32b)

° Double precision (64b)
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* Integer Numbers
° Byte (8b)
° Halfword (16b)
> Word (32b)
° Doubleword (64b)

"Brain" float precision (16b), commonly referred to bf16 or bfloat16, is a data type
commonly used in machine learning algorithms. The data type is 16 bits wide, the

same as the half precision floating-point data type. However, bf16 uses the large 8-bit
exponent range of the single precision 32-bit floating-point data type but a significantly
smaller mantissa precision than even the half precision data type, 7 bits plus a sign bit.
For comparison, half precision mantissa precision uses 10 bits plus a sign bit while single
precision uses 23 bits plus a sign bit. This feature is available on processors that support
the FEAT_BF16 feature. (See Section 2.2, "Arm AARCHG4 ISA").

Table 3.1. FP Types Supported in the Advanced SIMD and FP Unit: By Field

Data Name Exponent Mantissa
Word Size Bits Min Min Max Max Bits* Decimal
Decimal Decimal Precision
(in digits)
16b half 5 -14 -4.22 +15 +4.51 10+1 3.31
16b bfloat -126 -37.95 +127 +38.23 7+1 2.40
32b single 8 -126 -37.95 +127 +38.23 23+1 7.22
64b double 1 -1022 -307.83 +1023 +307.95 52+1 15.95

Table 3.2. FP Types Supported in the Advanced SIMD and FP Unit: By Range

311

Data Name |Absolute Range Available (binary) Absolute Range Available (decimal)
\glprd Min Min Max Min Denormal Min Max
e Denorma
I
16b half 2724 2714 2+16 _ 2+5 5.960x108 | 6.104x10° 65504
16b bfloat 2-133 2-126 2+128 _ 2+120 | 9184x10-41 | 1.175x10-38 | 3.390x10+38
32b single 2-149 2-126 2+128 _2+104 | 1401x10°45 | 1.175x10738 | 3.403x10*38
64b | double | 2-1074 | 2-1022 | 2+1024 . 2+971 | 4,941x10-324 | 2.225x10-308 | 1.798x10*308

*For normalized values, there is effectively +1 extra mantissa bit from the "1" most-
significant bit that is assumed to be at the beginning of each mantissa, but is not
actually stored. This “free” mantissa bit is lost for denormalized numbers, however.

FP Rounding, NaN, and Denormal Controls

Various rounding, NaN handling, and denormal handling controls are available in the
FPCR (Floating Point Control Register). FPCR can be accessed directly through the
MSR/MRS instructions or preferably through fenv functions declared in fenv.h. Note
that settings other than the default are rarely needed beyond specific mathematical
algorithms and circumstances.
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Table 3.3. FP Rounding, NaN Handling, and Denormal Handling Controls Available
in the Floating Point Control Register (FPCR)

Field Name [Bits Required Definition
Feature
FIZ 0 FEAT_AFP Flush Inputs to Zero. Controls whether single-precision,

double-precision, and BFloat16 input operands that are
denormalized numbers are flushed to zero.

AH 1 FEAT_AFP Alternate Handling. Controls alternate handling of
denormalized floating-point numbers.
NEP 2 FEAT_AFP Controls how the output elements other than the lowest

element of the vector are determined for Advanced SIMD
scalar instructions.

FZ16 19 FEAT_FP16 Flushing denormalized results to zero control bit on half-
(available in all precision data-processing instructions.
CPUs in this
guide)

RMode 23:22 Rounding Mode control field.

Fz 24 Flushing denormalized results to zero control bit.

DN 25 Default NaN use for NaN propagation.

AHP 26 Alternative half-precision control bit.

See https://developer.arm.com/documentation/ddi0595/2021-03/AArch64-Registers/
FPCR--Floating-point-Control-Register for more details.

Arm Advanced SIMD and FP Registers

Regardless of element data type, all use the same set of thirty two 128-bit vector
registers. These can be used as either scalar values, 64-bit short vectors, or 128-

bit full-size vectors, as is depicted in Table 3.4: “Vector Register Layouts”. In

assembly language, vector registers are specified as V<register number>.<number

of elements><element size letter>, while scalar registers consisting of only a single

data element are specified as <element size letter><register number>. The possible
combinations are listed in Table 3.5: “Vector Register Interpretation”. Individual elements
(or sometimes “lanes") within a vector can be selected by some instructions, and are
encoded as vector registers with an additional [<lane number>] specifier at the end. For
example

* v20.4s: vector register #20, interpreted as a 128-bit vector of four 32-bit words
* v13.8B: vector register #13, interpreted as a 64-bit vector of 8 bytes
* $20: a scalar 32-bit word in vector register #20.

This scalar version happens to be equivalent to v20.4s[0], the first element of the same
register when interpreted as a vector. When using only a scalar or 64-bit subset of

the entire register, the low-order 8/16/32/64 bits are always active while the high-order
bits of any destination registers are usually zeroed. In addition, some Advanced SIMD
instructions allow direct access to the W/X integer registers in order to allow transfers
between the separate register files. However, use of these instructions should always

be minimized, because these cross-unit accesses are slower than normal register
accesses.
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3.3

Table 3.4. Vector Register Layouts

Element Element Number within Vector

Aits white = scalar, white + light gray = 64b vectors, all cells = 128b vectors

Byte-> %5 |14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

8b % |14 |13 [ 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0

16b 7 6 5 4 3 2 1 0]

32b 3 2 1 0

64b 1 0

Table 3.5. Vector Register Interpretation

Element Assembly Notation Intrinsic Notation
Size
Scalar |64b Vector| 128b Signed | Unsigned Galois Float Brain Float
Vector Integer Integer |Polynomial

8b Bn Vn.8B Vn.16B _s8 _u8 _p8 N/A N/A
16b Hn Vn.4H Vn.8H _s16 _u16 _p16 _f16 _bf16
32b Sn Vn.2S Vn.4S _s32 _u32 _p32 _f32 N/A
64b Dn <Use Vn.2D _s64 _uba _p64 _fea N/A

Scalar

The interpretation of the Neon registers is controlled strictly by the choice of
instructions and not by anything inherent in the registers themselves. Note that this
means that a wide number of “untyped" instructions work well for all data types. Loads,
stores, byte transposition, shuffle operations, and bitwise operations like masking all
work equally well with elements of any type. Also, no matter the type of data contained
in a register, it may be freely used by any other instruction. While generally not a good
idea with mathematical operations, this can advantageous with some kinds of shuffles,
for example.

C language intrinsics work with explicitly typed vectors and use a somewhat different
naming scheme from assembly that emphasizes the type and size of the data used by
each operation, encoded using the notations listed in the right-hand half of Table 3.5:
"Vector Register Interpretation”. Explicit casts are needed to shift from one type to
another, and if necessary, vector lengths are encoded with additional suffix letters, most
commonly g for 128-bit vectors (as "quadwords”).

Overview of Arm Advanced SIMD Mnemonics

Advanced SIMD instruction mnemonics are constructed in a systematic manner from a
modest-sized number of prefixes, suffixes, and about 60 core instruction mnemonics.
Consider sQrDMLAH, a common fixed-point instruction:

* s =signed

* @ = saturating
* R =rounding
* D = doubling
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* MLA = multiply-accumulate instruction

* # = high half of result

Overview of Arm Advanced SIMD Mnemonics

Most Arm Advanced SIMD instruction mnemonics are constructed in a similar manner.
The Arm Advanced SIMD instruction prefixes are summarized in Table 3.6: “Advanced
SIMD Instruction Mnemonic Prefixes"” and the suffixes are summarized in Table 3.7:
"Advanced SIMD Instruction Mnemonic Suffixes". The prefixes, core mnemonics, and
suffixes are further described in subsequent sections.

Table 3.6. Advanced SIMD Instruction Mnemonic Prefixes

Field Name

Coding

Type

Description

Data Type

(none) /BF /F/
S/U

All

Selects between brain floating point
(bfloatl6), general floating point, signed
integer / fixed point, and unsigned integer /
fixed point operation types, if needed

Arithmetic

Modulo/Saturating (none) / Q Integer / Fixed |Controls how operation handles overflow at
Point high-order end (most significant bits)
Truncating/Rounding (none) /R All Controls how operation handles low-order bits
(least significant bits) that are lost
Doubling/Halving D/H Fixed Point Multiplies the result x2 (D), to align fixed-
point binary points, or x0.5 (H), returning an
arithmetic mean instead of a sum
Polynomial P Galois Selects Galois field multiplication
Polynomial
Negate Floating Point  |Negates the result
Complex Number C Floating Point  |Modifies operations to work with complex

numbers arranged as interleaved (real,
imaginary) values

Table 3.7. Advanced SIMD Instruction Mnemonic Suffixes

HI/HS/LE/LT

Field Name Coding Types Description

Cryptographic Various N/A Various AES / SHA / etc. cryptographic
instruction specifications

Load/Store Interleaving (1 /2/3/4 Load/Store Selects how elements are interleaved as they
are loaded from memory

Immediate I All For the MOV and MVN instructions, selects the
source value from an immediate operand

Comparison Conditions |EQ /GE / GT / All For compare-and-mask and conditional

instructions, chooses a value comparison
mode

Mode

Special Value Handling

E/NM/X

Floating Point

For specific instructions, controls how
operation handles NaN and oo values

FP Rounding

A/I/M/N/P/
X/2

Floating Point

For CVT and INT instructions, selects a
floating point rounding mode

Output Data Type

(none) /F/S/U

All

Selects an output data type if it is different from
the input

Return High Half

H

Typically Fixed

Point

Indicates that the instruction result contains

only the high-order half (most significant bits)
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3.3.1

3.3.2

Table 3.7. Advanced SIMD Instruction Mnemonic Suffixes (cont.)

Field Name Coding Types Description

Narrow /Long /Wide [N/L/W All Indicates that the instruction result elements
have smaller or larger bit width than each
source element

Lower/Upper Half (none)/1/2 All Selects an operation half for instructions that
need double-wide input or produce double-
wide output

Paired or Horizontal P/V All Indicates operations that work “horizontally”
across vectors instead of in lanes

Bottom / Top B/T Brain Floating |For lengthening instructions, selects only odd

Point or only even input elements
(bfloatlé)

Overall instruction data type: (none) /BF/F/S /U

Most Advanced SIMD instruction mnemonics start with one of four code letters/
sequences, indicating the operation's data class.

* BF-class: instructions operate on brain floating point (bf1oat16) values
* F-class: instructions operate on general floating point values

* s-class: instructions operate on signed integer or fixed-point values

* u-class: instructions operate on unsigned integer or fixed-point values

Mathematical operation instructions without one of these three classification letters
work correctly with both signed or unsigned integer or fixed-point values, but not
floating point values.

Non-mathematical operations like loads, stores, bitwise logic/masking, and permutation
instructions also do not have a class indicator, and can be used with any data type.

These class distinctions are required based on certain features of various instructions.
For example, an apD in modulo arithmetic works correctly with both unsigned and

2's complement signed numbers. However, any ADD with saturating arithmetic works
differently with unsigned and signed values, because the minimum/maximum saturation
values are different. Hence, these instructions always come in separate s and U versions.
The suQaDD instruction is a unique mixed-mode case that has one signed input (the
destination accumulator) and one unsigned input.

Modulo or Saturating Arithmetic: Q

By default, integer Advanced SIMD instructions compute using modulo arithmetic, so
any results that overflow “"wrap around” from one end of the representable range of
values to the other. This is the normal type of math used in all conventional integer Arm
operations. Operations with the g prefix, however, use saturating math which clamps
any overflowing results to the maximum or minimum value instead of wrapping around.
Note that all instructions with the @ prefix must also have an s or u prefix, since the
maximum and minimum values for signed and unsigned numbers are different.
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3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

3.3.8

Truncating or Rounding: R

By default, operations that lose bits at the “right” low-order end (least significant bits)
of each data word, such as right shifts, simply truncate (drop) the lost bits. However,
instructions that specify the r rounding prefix will instead round up if the last bit to

be shifted out — the one effectively at the “minus one" bit position — is a 1 value.
Rounding has the same effect as truncation if the last bit shifted out is a 0 value. This
behavior is desirable for many signal processing algorithms, as it avoids biasing the
results of long calculations toward zero.

Doubling or Halving: D / H

The D prefix indicates that the integer multiply-accumulate operation multiplies the
multiplier output by an additional 2x factor before accumulating, doubling the multiply
result. This makes these multiply-accumulate operations compatible with the signed,
fixed-point arithmetic used frequently in signal processing that uses a range of [—1 to
+1). Multiplications of two of these signed integers will result in a result twice as wide,
but with two “sign” bits at the high end. Doubling the result with a 1-bit left shift corrects
this to a number with effectively with one “sign” bit again. These instructions should
generally never be used with simple integers.

The = prefix indicates that the result of an addition will be multiplied by a 0.5x factor
before the result is returned. This effectively turns the addition into an “average”
operation, which produces the arithmetic mean of the two inputs and cannot ever
overflow. Unlike the doubling operations, these operations are useful with both integer
and fixed-point types.

Polynomial: P

The p varieties of multiply instructions perform Galois field polynomial multiplication
operations instead of standard ones. These are primarily for use in cryptography.

Negated: N

The floating point multiplication operations with the N prefix negate their results before
returning the value. They can save many explicit FNEG instructions when multiplying-
and-adding long sequences of terms.

Complex Number Arithmetic: C

The floating point addition and multiplication instructions with the ¢ prefix are designed
to perform mathematical operations on vectors of complex numbers organized as one
double or two float pairs of interleaved (real, imaginary) values. Each instruction has

an immediate value that specifies the positive or negative orientation of each multiply.
See Section 3.5.5, "Complex Number Instructions” for a description of how these
instructions can be used to efficiently perform complex multiplications.

Core Instruction Mnemonic

In the middle of each mnemonic is the abbreviated name of the actual operation being
performed by the instruction. Most are three letters long. Table 3.8: “Advanced SIMD
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3.3.9

3.3.10

Cryptographic: Various

Core Instructions Grouped By General Function” groups the instructions by type. About
half of the instructions do not use prefixes or suffixes at all and only come in a single
form, but a few more common operations such as App, suB, and SHR come in 20-40
variations each.

Table 3.8. Advanced SIMD Core Instructions Grouped By General Function

Group Instructions
Mathematical [Sign Control |ABS, NEG
Operations [ ithmetic  |ABA, ABD, ADA, ADD, SUB
Multiply DOT, MADD, MLA, MLS, MSUB, MUL
Divide/Sqart DIV, RECP, RSOQRT
Comparison |[AC<cond>, CCMP, CM<cond>, CMP, CMTST, CSEL, MAX,
MIN
Conversion CVT, INT
Bitwise Shift SHL, SHR, SLI, SRA, SRI, XT
Operations |, ic AND, BIC, EOR, NOT, ORN, ORR
Masking BIF, BIT, BSL
Cryptography ([AES, BCAX, RAX, SHA, XAR
Misc. Bitwise |CLS, CLZ, CNT, RBIT
Element Move DUP, INS, MOV, MVN
Operations |5 "Shuffle |EXT, REV, TBL, TBX, TRN, UZP, ZIP
Memory Load LD<n>, LD<n>R, LDP, LDNP, LDR, LDUR
Operations [ e ST<n>, STP, STNP, STR, STUR

Cryptographic: Various

The cryptographic instructions have a large number of customized extensions. Unlike
with most extensions, these are not special modes, but actually a large number of highly
specialized and unique instructions that are customized for use in specific uses within
hand-written cryptographic code. Consult the Arm instruction reference for further
information.

Load/Store by Element Interleaving Factor:1/2/3/4

A 1/2/3/4notation is used at the end of L.bD<n> (or middle of Lb<n>R) instructions

to indicate the interleave factor for the elements in memory. (This is the only possible
suffix for load/store operations, so they cannot be confused with the other use of 1/

2 in Section 3.3.18, “"Lower-Half / Upper-Half: (none) /1/ 2 ".) These load and store
instructions are used to load interleaved data from memory and de-interleave it as it
moves into registers without using separate Uzp instructions, and then to re-interleave
the data as it is stored without extra z1p instructions. The number indicates the number
of fields that are in each data element.

For example, when loading an array of pixel values consisting of interleaved RGB values,
a LD3 instruction can be used to de-interleave these values and bring them in as three
separate all-R, all-G, and all-B vectors. A similarly packed array of RGBa pixels (RGB
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with an alpha channel) would instead be de-interleaved using a L.D4 instruction into
separate all-R, all-G, all-B, and all-alpha vectors. Note that L.D1 instructions do not
actually perform any de-interleaving, so they are just normal vector loads with different
addressing modes. For a code example that uses 1.D3 and sT3 intrinsic functions, see
Section 3.4.4.9, "Load/Store Operations”.

ST<n> instructions perform the reverse operations, interleaving packed vectors as their
contents are written out to memory in interleaved form.

Figure 3.2: “Advanced SIMD Load/Store Element Interleaving and De-Interleaving”
illustrates the interleaving patterns that these instructions perform. Note that these
instructions are often microcoded and require additional resources compared with a
simple load or store (see Section 4.4.8, "Multi-pop Instructions”). However, these
instructions are considerably more efficient than equivalent sequences of simpler
instructions. Use them when interleaving/de-interleaving long vectors, but do not use
them if operating on only a few elements.
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Figure 3.2. Advanced SIMD Load/Store Element Interleaving and De-Interleaving

v Address X All elements here are halfwords, with 8 elements per vector Address X+63
Memory: [0[1[2]3]4[5]6]7[8]9]10[11][12]13[14]15]16]17[18]19]20]21[22]23

b127 Result V+0 b0 bi127 Result V+1 b0 b127 Result V+2 b0 b127 Result V+3 b0

LDR: [7]6[5]4[3]2][1]0]

Multiple Structure Variants

LD1-to-1: [7]6]5]4[3]2]1]0] LDR and LD1 are equivalent, with no interleaving, but
have different addressing modes and LD1 has versions
LD1-to-2: [7]6]5]4]3][2]1]0] [15][14]13]12[11]10] 9| 8] to load multiple vectors with a single instruction

LD1-to-3: [7]6]5]4]3[2]1]0] [15]14]13]12]11]10] 9 | 8 | [23]22]21]20]19]18]17]16]

LD1-to-4: [7]6]5]4[3]2]1]0] [15]14[13[12[11]10] 9 [ 8] [23[22[2i]20[is] 8[i7[ie| [ETlEclE|2a|2a2c]25124

LD2: [14[12]10[8]6]4|2]0] [15[13[11[9]7[5][3] 1]

LD3: [21]18]15[12] 9| 6|3 ] 0| [22]19]16]13[10] 7 [ 4 | 1| [28]20[17[14[11] 8] 5] 2]

LD4: [20]16]12[ 8 4 ] 0] 21]17]13[ 9 [5 | 1] [22]18]14]10] 6 | 2|

Deinterleaved Structs Interpretation LD2/LD3/LD4 deinterleave
elements while reading them
PR (eCHl O (1|2 8|45 6[7 8[9 10111218 1415 from memory, equivalent to

multiple LDR+UZP ops

(Wpp2il 14 1210 8 6 4 2 O P58 11 9/[7 |5 38 1
ST2/ST3/ST4 reinterleave
LR e 0 (1Bl 3 28l ¢ |78l ° 10l 12 13[4 15 16 [ 15 [19/208 21 2228 elements while writing them
to memory, equivalent to

L0s: ERCRERERNCENG ECICEREAR] EEEITEE] e o5 os
Rl 0 [1] 2 8 4+ 5] 6 @l s (9 10l 1213 14 i8] 16 17 18 [l 20 21 22 [B8 24 [25 26 B 25 [29] 30 EHl

o+: EEEERRRE FEEIENEE EEEER DL

Single Structure To One Lane Variants
Element: (7] [6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0] (7] [6] [5] [4] (3] [2] [1] [O] [7] [6] [5] [4] [3] [2] [1] [0]

OFIUCIRN H G| F[E[D[C[B/AMPIOINIMILIKIJ[I@XWVIUTISIRIQ@f]eldlc[blalZ]Y]
LD1-to-[2]:
LD2-to-[2]: (PlOIN[wIL KR []
LD3-to-[2]: P lo[nv|L [l [ lx[w[v]uTBIR[Q]
LD4-to-[2]: (P lo[NIMIL IR [ lx[WIVIUIT BRIl fleldlc o Bl Z]Y]

Single Structure Replicated Variants

LD1R: [0]oJoJoJofoJo]o]
LD2R: [oJoJoJoJoofolo] At [ [T [1 [1[1]1]
LD3R: [oJoJoJoJolofolo] [A[A[1[1[1[1[1]1] [2]2]2]2]2]2]2]2]

LD4R: [o|o]ofofofofofo|[1]1[1][1[1]1]1]1][2]2]2]2]2]2]2]2]|[3][3]3]3]3]3]3]3]
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Recommendation: Leverage Lb<n> and sT<n> Instructions for Interleaved
Memory Structures:

The LD<n> and sT<n> instructions provide methods for interleaving and de-
interleaving of memory data. Use them if operating on more than a few
elements. Rather, consider a sequence of simple loads, stores, and various
logical instructions when only operating on a few elements.

[Magnitude: Medium | Applicability: Low]

Create Immediate: |

This extension of MOV and MVN synthesizes a new vector from an immediate value and
loads it into every element lane of the destination vector. Several shift variants are
available for distributing the small immediate value into the element. Most are fairly
straightforward placements of 8-bit immediate values into ranges of each element
specified by the LsL shift indication. However, the MsL shift variants pack in 1 bits below
the immediate value to allow any partial masking of 32-bit values to be generated with

a single instruction. Note that a Mov with MSL. #24 can be generated with a MmvN with

LSL #24. Similarly, the 64-bit version is designed for generating arbitrary byte-by-byte
masks of various kinds. In the following table, assume that the 8-bit immediate value is
"abcdefgh".

Table 3.9. Advanced SIMD Move Immediate

Element Size Name Binary Interpretation With 8-bit Inmediate Value
"abcdefgh"
8b #imm abcdefgh
16b #imm{, LSL #0} 00000000 abcdefgh
#imm, LSL #8 abcdefgh 00000000
32b #imm{, LSL #0} 00000000 00000000 00000000 abcdefgh
#imm, LSL #8 00000000 00000000 abcdefgh 00000000
#imm, LSL #16 00000000 abcdefgh 00000000 00000000
#imm, LSL #24 abcdefgh 00000000 00000000 00000000
#imm, MSL #8 00000000 00000000 abcdefgh 11111111
#imm, MSL #16 00000000 abcdefgh 11111111 11111111
64b #imm aaaaaaaa bbbbbbbb ccccccecec dddddddd
eeeeeeee ffffffff gggggggg hhhhhhhh

Other instructions obtain source values from immediate values such as orRr and B1c, but
do not use the 1 suffix.

Floating point FMOV instructions with immediate values do not use the 1 suffix, but also
have a unique encoding. Instead of being interpreted directly, the 8-bit immediate value
is treated as a compact FP format with 1 sign bit, 3 exponent bits, and 4 mantissa bits.
These compact floating point values offer a range anywhere from 0.125-31.0, using an
exponent range of 273 to 2*4, with both positive and negative values representable.

In the upper half of this range, the small mantissa limits precision to just an integer-
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3.312

3.313

by-integer level, while at the low end much smaller steps of 2~/ between individual
values are possible. This scheme allows a wide variety of common small constants to

be encoded with a single FMOV instruction. Zero is not representable using this simple
scheme, but FMOVI of #0.0 can be created by aliasing it to an integer MOVI of #0

instead. See "Modified immediate constants in AG64 instructions" in the Arm Architecture
Reference Manual for additional details.

Comparison Conditionals: EQ/GE /GT /HI/HS /LE /LT

The cM, FAC, and FCM instructions create masks in vector registers based on per element
comparison operations. The available instruction-comparison combinations are listed in
Table 3.10: “Advanced SIMD Comparison Conditionals”. Note that not all conditions can
be used with all instructions. For example, “less than” conditions are not available on

cM instructions that compare two vector registers, because the operand order can be
reversed and the "greater than or equal” condition be used. However, all conditions that
compare against an immediate value of #0 are available. For a full list of the condition
codes across the Arm ISA, see Section 2.9, "Condition Codes".

Note that comparison instructions that set flags, like FcMp, do not need a condition suffix
because consumer instructions will include a condition code that is evaluated against
the flags.

Table 3.10. Advanced SIMD Comparison Conditionals

Mnemoni Name Interpretation Instructions
c Code
EQ Equal A==B,A==#0 CM<cond>, FCM<cond>
GE Greater Than or Equal A=B,A=#0 CM<cond>, FAC<cond>, FCM<cond>
GT Greater Than A>B,A>#0 CM<cond>, FAC<cond>, FCM<cond>
HI Higher Than unsigned A >B CM<cond>
HS Higher Than or Same unsigned A=B CM<cond>
LE Less Than or Equal A=#0 CM<cond>, FCM<cond>
A=<B All aliased to GT with swapped operands
(may not be available on all assemblers):
CM<cond>, FAC<cond>, FCM<cond>
LT Less Than A< #0 CM<cond>, FCM<cond>
A<B All aliased to GE with swapped operands
(may not be available on all assemblers):
CM<cond>, FAC<cond>, FCM<cond>

FP Special Value Control Suffixes: E/NM /X
Three suffixes trigger special handling of IEEE 754 Not-a-Number (NaN) and Infinity
values:

* FcMP and FccMP instructions with the E suffix trigger exceptions when comparisons
are made with a NaN value, instead of quietly selecting a default result. A signal
handler must be registered to handle these exceptions.

* FMAX and FMIN instruction variants normally use a mode where NaN values always
"win" the maximum/minimum comparison and are propagated to the output, so errors
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3.3.15

3.3.16

will be evident. The nM variants use IEEE NaN handling instead, always selecting any
actual numerical value over NaN value in any particular lane. In this mode, NaN values
are propagated to the result only if both inputs are NaN values, and can disappear
otherwise.

* FMUL instructions have a special X variant that produces a value of 2.0 for any
occurrences of zero times infinity, instead of just zero. The result is negative if only
one of the values is negative, otherwise the result is positive. This represents a
common limit case for some very specific mathematical operations. Unrelated, the
"x" suffix on the FRECPX instruction represents "exponent".

These three suffixes are seldom used in general-purpose computations.

FP Rounding Mode: A/I/M/N/P/X/Z

Both cvT and INT instructions use a variety of suffixes to select different rounding
modes for FP-to-integer or FP-to-fixed-point conversions, which often have a fractional
part that will need to be rounded off. Variations include round towards: nearest, zero,
+00, —oo, and others. These variants are usually used to determine the range of possible
rounding error that may be introduced by conversion operation. See Arm Architecture
Reference Manual for full descriptions and options.

There are also two special INT instruction rounding modes:

* I: The instruction uses the current default FPsCR rounding mode. This is also the
default option for cvT operations that have no explicit rounding mode suffix.

* X: The instruction uses the “eXact” mode that triggers an exception when any
rounding occurs. Use this mode to guarantee that only integers are being converted.
A signal handler must be registered prior to the use of these instructions to catch the
resulting exceptions.

Do not confuse the rounding N suffix with the narrowing x suffix, because both can be
used with different kinds of cvT instructions. Rounding N always includes an output type
specifier from Section 3.3.15, "Different Output Type: (none) / F /S / U" just after the N
suffix.

Different Output Type: (none) /F/S /U

Most instructions output the same type as the input, from the type prefix described

in Section 3.3.1, "Overall instruction data type: (none) /BF /F /S / U". However, most
cvT instructions use explicit type suffixes to indicate the different destination type for
the conversion (e.g. F for floating point, s for signed integer, or U for unsigned integer).
There are also a few sighed-to-unsigned integer/fixed-point sER and XT instructions that
can produce an unsigned output from a signed input, stripping the sign bit off of the
output in order to get an extra bit of range. These are indicated with a U suffix.

Narrow, Long, Wide: N /L /W
By default, Advanced SIMD operations have the same data type for the input and output.
These three suffixes are used to select different bit widths for the input and output:
* Narrow (n): Destination is half the size of the source type(s): 64->32 bit (D—->s),
32->16 bit (s—>1), and 16->8 bit (1—>B) conversions
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* Long (r): Destination is double the size of the source type(s): 8>16 bit (8->H),
16->32 bit (#~>s), and 32->64 bit (s=>D) conversions

* Wide (w): Destination and one source are double the size of the second source:
16+8->16 bit (#+B->H), 32+16>32 (s+H->S), 64+32->64 bit (D+s->D) conversions

These suffixes most commonly apply to integer and logical instructions, but they

do apply to a small set of floating-point instructions, primarily converts. With these
three modes, integer elements can be converted from narrower, lower-range/precision
formats to wider, higher-range/precision formats and back. Most frequently, lengthening
or widening versions are used to increase the range and/or precision of data values as
they come into registers, in order to avoid overflow and rounding during long sequences
of calculations. Narrowing versions are then used to pack the results back down to
smaller elements before they are stored to memory.

Narrowing versions in particular often have saturating and/or rounding options available
to define the behavior regarding bits that are cut off at the high or low ends as the
elements are packed down to a smaller size. They also sometimes come in high-half
versions (see Section 3.3.17, "Return High Half : H") that return the high half of the result
instead of the low half. These options are always used with either lower/upper-half or
paired/horizontal suffix options, described in Section 3.3.18, “Lower-Half / Upper-Half:
(none) /1/2 " and Section 3.3.19, “Cross-Lane Paired or Horizontal: P / V", in order to
specify how lanes from different vectors should be combined.

For instance, consider RADDHN and RADDHN2, Rounding Add returning High Narrow.
These instructions add each vector element in the first source ASIMD&FP register to
the corresponding vector element in the second source ASIMD&FP register, and place
the most significant half of the result into a vector. RADDHN writes the vector to the lower
half of the destination ASIMD&FP register, and RADDHN2 writes the upper half of the
destination ASIMD&FP register.

Recommendation: Use Mathematical Instructions that Include Type
Conversions:

Instead of using explicit extension instructions, such sxTL, on inputs prior to a
calculation that results in a larger-typed size, use instructions that include the
conversion in with the calculation, such as sADDL and SADDL2.

[Magnitude: Medium | Applicability: Medium]

Return High Half : H

Eligible core instructions are either arithmetic instructions (such as multiplies) that

can produce results with ranges larger than the input type, or narrowing (precision
reduction) operations. Without the # suffix, most eligible core instructions return the
low-order half of the 2x-wide result and throw out the high bits (or saturate at the
maximum representable value, for g-prefix saturating instructions). Instructions with the
H suffix, however, return the high-order half of these 2x-wide results.

A pair of instructions (one H version and one non-H version) can be used to obtain the
full, 2x-wide operation results. The high-order half of each result will be in one vector,
while the low-order half will be in a second. While this is feasible for some scenarios,
usually pairs of L suffix lengthening operations (see Section 3.3.16, “Narrow, Long,
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Wide: N /L /W") will be a better choice. More commonly, however, these versions are
used with signal processing algorithms to get the high-order half of fixed-precision
results when the low-order bits can be truncated or rounded (the latter using the
R-prefix).

Lower-Half / Upper-Half: (none) /1/ 2

Some Advanced SIMD instructions inherently produce destination vectors that are half
or twice the size as the source vectors. The subsequent numerical suffix controls which
half of two-part sources or destinations will be consumed or produced by any particular
instruction. The N / L. / w suffixes produce a result that is 2x wider than the inputs, or else
require 2x wider sources, such as:

* Narrow(n) + (none): Writes the narrowed result to lower half of the destination
register, and clears the upper half. For example: SQRSHRN.

* Narrow(N) + 2: Writes the narrowed result to upper half of the destination register,
while maintaining the previously-computed lower half in the destination register. For
example: SQRSHRN2.

* Long(Lr) + (none): Selects the lower half of both sources. For example: SQDMLAL.

* Long(L) + 2: Selects the upper half of both sources. For example: soDMLA.

* Wide(w) + (none): Selects the lower half of second source only. For example: ssuBw.
* Wide(w) + 2: Selects the upper half of second source only. For example: ssuBw2.

Using the number suffix, pairs of source or destination vectors can be processed in an
unambiguous manner, according to the diagrams in Figure 3.3: “"Advanced SIMD Narrow,
Lengthen, and Widen".
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Figure 3.3. Advanced SIMD Narrow, Lengthen, and Widen

A) Narrowing Operations (N): Output elements are half the size of input elements

For OpN_2 only: For OpN only:
A6 | A5 | A4 | | A3 | | At | A0 |
]

B |

1 A7
Sources: |

|
B7 | 6 B. B!
A A A
Operation: ~ (op)  (op)  (op) (o) (Cop)
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2

of eachresult: [ R7 | [Re ] [Rs] [Ra] [Rra] [R2] [R1] [Rro]

Either with truncation
(modulo) or saturation (Q)
OpN Result: J oo [ o[ o [R [R]RI]|RO

a 1>
o

@

S

(low vector half only)
Use the same destination register

for both ops; OpN2 only overwrites
FR7 I R6 1 R5 ] R4 ] R3] R2 ] RI| RO ] Mahhalftoallowresults to merge

OpN2 Result:

(merges in high vector half)

B) High-Half Narrowing Operations (HN): Output elements are half the size of input elements

C Operations same as with low-half narrowing, above )
y v y v y y y y
i A70pB7 | A6opB6 | A5opB5 | A4opB4 A30opB3 | A20pB2 | A1opB1 | AOopBO

Keep high
half of each

result: [ R7 | [Rre ] [Rs ] [Ra] [Rra] [Re ] [Rr1] [[Ro ]
Eitheryvith
‘,[,uun:;::(;n(;; C Packing into results same as with low-half narrowing, above

C) Lengthening Operations (L): Output elements are twice the size of input elements

LAz las | as [ A4 ] A3 | A2 | AL T AL oo sources for

Sources: both OpN and OpN2
B7 | B6 | B5 [ B4 [ B3 | B2 | B1 | BO

\ /
op Jop Jop Jop Jop ) op ) op) op

Result: | A7opB7 | A6opB6 | A5opB5 | A4opB4 | | A3opB3 | A20pB2 | A1opBi | AoopBo |

| R~ | R | R | R I RE | R | R | R |

OpN2 Result (high half of full result vector) OpN Result (low half of full result vector)

D) Widening Operations (W): Output elements are same size as A elements, but twice the size of B ones

For OpNz only: For OpN only:
1 A7 | A6 | A5 | A ] 1 A3 | A2 | Al | A0 |
Sources:

op

Result: | A7opB7 | A6opB6 | A5opB5 | A4opB4 | | A3opB3 | A20pB2 | AlopB1 | AOopBO |

I R~ | R | R | R I RZE | R | R | R |

OpN2 Result (high half of full result vector) OpN Result (low half of full result vector)

Similarly, the 1 / 2 notation is used by the TRN, uzPp, and z1P transformation operations
to choose the "primary" lower half or "secondary" upper half of the resulting merger

of input words, as depicted in Figure 3.4: "Advanced SIMD Byte Transformations”. An
explicit 1 notation is required for these instructions; assemblers will not assume that for
you. Shuffle and Permute Instructions: “Shuffle and Permute Instructions”illustrates this
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idea further and shows how different instruction variants can be used to generate a wide
variety of transformations. Note that while these permutation instructions are often used
in 1/ 2 pairs, there are many situations when using only one or the other might still be

useful.

Figure 3.4. Advanced SIMD Byte Transformations

b127 #1 b0 b127 #2

bo

Sources: [7]6]5][4[3[2]1]o] EIEEEEEIN

~_

1\ > Implements
element
v 1\\;: \Q\ transposition
-

-
Results: 342j.7. 3 0 B E\j

TRN1

Interleaved even elements

TRN2

Interleaved odd elements

Sources: [7]6]5][4[3[2]1]o] EIHEEIEEIN
I~

\, \ \

PR
Results: HIF |05
UZP1

Packed even elements

[5[3[1]
uzp2

Packed odd elements

De-interleaves
elements

Sources: [7]6]5][4]3[2]1]o] EIHEEIEEIN

Interleaves
elements

\l\ ~<

Results: E32E1j. .6. .\j

ZIP1 Z1P2

Interleaved low-order halves

Interleaved high-order halves

Packed halves can be obtained with ZIP1/ZIP2 of 64b elements

Cross-Lane Paired or Horizontal: P/ V

Advanced SIMD has two different types of “horizontal” reduction operations, which
combine results in different vector lanes together. The p-suffix paired versions combine
adjacent vector lanes across two vectors together to produce a single vector as a

result. Figure 3.5: “Advanced SIMD Cross Lane Paired and Horizontal Instructions”

(B) illustrates a paired instruction. Trees of repeated paired operations will gradually
combine all lanes of input down to result element #0. These versions are available for
any data type. Meanwhile, the powerful v-suffix across vector versions compute a sum,
minimum, or maximum across all elements of a vector with a single instruction, as is
depicted in Figure 3.5: “Advanced SIMD Cross Lane Paired and Horizontal Instructions”
(C). For complexity reasons, these are not available for all data types, particularly FP
types. They can be synthesized with repeated p-suffix operations if necessary, however,
as is described in Section 3.5.3, “"Horizontal Arithmetic and Test Instructions”. For
comparison, Figure 3.5: "Advanced SIMD Cross Lane Paired and Horizontal Instructions”
(A) depicts the data flow through normal operations within vector lanes.

These suffixes can also be combined with the L. (long) suffix from Section 3.3.16,
“Narrow, Long, Wide: N /L / W" to create paired or cross-vector operations that produce
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elements twice as long as the original values, as depicted in Figure 3.5: “Advanced SIMD
Cross Lane Paired and Horizontal Instructions” (D-E). These can prevent overflow from
occurring, if it might be a concern.

Figure 3.5. Advanced SIMD Cross Lane Paired and Horizontal Instructions

A) Normal Lane-Based Operation

1 A7 | A6 | A5 | A4 | A3 ] A2 | A1 [ A0 |

Sources:

B7 | B6 | B5 | B4 [ B3 | B2 | B1 B0 |

\ /
op Jop Jop op )op)op ) op)op

Result: | R7 [ R6 | R5 | R4 [ R3 | R2 | R1 [ RO |

B) Paired Operation (P)
Sources: | B7 | B6 B5 B4 B3 B2 B1 BO A7 | A6 | A5 | A4 | A3 [ A2 | A1 AO

(Cop ) (Cop ) (Cop ) (o) (Cop ) (or)

Result:

C) Horizontal Operation (V)

Sources: A7 | A6 | A5 | A4 | A3 [ A2 | A1 AO

'l Associative op (sum/max/min) >

Scalar Result: | RO |

D) Long Paired Operation (LP)
Sources: A7 | A6 | A5 | A4 [ A3 | A2 | A1 | AD

(Cop ) (Cop ) (Cop ) (or)
¥ v v v

Result: 1 R3 | R2 | R1 | RO | 2xelementsize

E) Long Horizontal Operation (LV)

Sources: A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0

‘<l Associative op (sum only) )
Scalar Result: [ RO | 2xelementsize

Bottom or Top Half of Element Pairs: B/ T

Most operations involving destination elements twice as wide as the source elements
are encoded as lengthening operations using the lower or upper half of the entire vector,
as described in Section 3.3.18, “Lower-Half / Upper-Half: (none) /1/ 2 ". This approach
works well for algorithms where all of the output results of the resulting double-length
vector are needed, with the elements in the original order.

However, some algorithms prefer the lengthened output elements in interleaved order
or will proceed to reduce them afterward. These instructions always come in pairs, with
the Bottom (B) version operating on even input elements (0, 2, 4, etc.) and the Top (T)
version operating on odd input elements (1, 3, 5, etc.), as depictexd in Figure 3.6. Only a
few brain floating point (bfloat16) operations utilize this interleaved approach.
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Figure 3.6. Advanced SIMD Top and Bottom Half of Element Pairs

A) Bottom Operation (B)

Sources:

Result:

B) Top Operation (T)

Sources:

Result:

3.4

A7 [ A6 | A5 | A4 | A3 | A2 [ A1 | AD |

IB87[B6 | B5|B4]B3|[B2] B1[ B0
A6 op B6 A4 op B4 A2 op B2 A0 op BO
I R3 | R2 | R1 | RO |

A7 [ A6 | A5 | A4 | A3 | A2 [ A1 | AD |

B7 | B6 Bi | Bo |
YV VYV A
(_op (o) (or)
| A70pB7 | A50pB5 | A3opB3 | A1opB1 |

y y y y

I R | R | Rt | RO |

B5 | B4 | B3 | B2

Compiler Intrinsics for Instructions and Data Types

Advanced SIMD and FP instructions discussed in the following sections can be used
directly in assembly code or in compiled code through intrinsics, which are functions
that translate directly to Arm Advanced SIMD and FP instructions. When routines are
written in assembly, the developer must enforce aspects of the Application Binary

Interface, such as calling conventions.

Before writing custom code using assembly or intrinsics, explore the auto-vectorization
capabilities of the compiler. Use the -ffast-math compiler flag, when applicable, to
allow the compiler to aggressively optimize floating point code. For a full list of the
transformations, see the Clang User Manual.

The Xcode development environment also offers a standard set of Advanced SIMD and
FP intrinsics that allow a developer to code the bulk of their software in a high-level

language while embedding specific Arm instructions using a function-like notation. This
gives programmers complete control over the selection of Advanced SIMD computation

instructions, at a level similar to what'’s

possible with assembly language. At the same

time, the compiler handles the routine bookkeeping tasks like loading values from
memory, register allocation, loop control, and storing results to memory. Because the
instructions required to handle these tasks are often much more than half of the
assembly code in any Advanced SIMD routine, leaving them to the compiler greatly

reduces the developer workload.

As an example, "Transpose Vectors (Primary)" TRN1 instruction operating on 128b SIMD
variables consisting of two 64b double precision floating point values can be called

using the following intrinsic:

#include <arm neon.h>

// float64x2_t vtrnlg f64(float64x2_t
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float64x2_ t a0, al, bO;

b0 = vtrnlg f64(al0, al);

Intrinsics can be used in any C, C++, or Objective-C code simply by adding #include
<arm_neon.h> at the beginning of any relevant source files and then using the intrinsics
where needed.

Arm also offers reference pages on the intrinsic datatypes and functions.

Recommendation: Use Intrinsic Functions to Manually Vectorize the Core
Algorithm in High-Level Languages:

Implement the core algorithm using intrinsics to efficiently leverage the
Advanced SIMD instruction set. Leave the mundane tasks of obeying the ABI,
managing pointers and loop constructs, allocating registers, and general loading
and storing to the compiler. The compiler will typically implement these tasks
efficiently without any developer intervention.

[Magnitude: High | Applicability: High]

C Vector Types

Before using the intrinsics themselves, the developer must convert variables that will
be used with the intrinsics into the appropriate vector types. The available types are
summarized in Table 3.11: “Advanced SIMD Intrinsic Data Types". Each unique type
comes in versions for use with scalars, 64-bit Advanced SIMD vectors, and 128-bit
Advanced SIMD vectors. Each type explicitly contains a value describing its bit width,
using notation based on that used in the C stdint.h header file to precisely specify
integer types. In addition, the "xN" notation at the end of each type name specifies the
number of fields of that type present in the vector, and thereby implicitly encodes the
length of the vector.

Table 3.11. Advanced SIMD Intrinsic Data Types

Type Element Size Scalar 64b Vector 128b Vector
Floating Point 16b floatl6_t floatléx4_t floatl6x8_t
32b float32_t float32x2 t float32x4 t
64b float64_t float64xl t float64x2_t
<Use Scalar
Brain Floating Point [16b bfloatl6_t bfloatlé6x4 t |bfloatl6x8 t
Signed Integer or 8b int8 t int8x8 t int8x16_t
Fixed Point 16b intl6_t int16x4_t int16x8_t
32b int32_t int32x2_t int32x4_t
64b int64_t int64x1l_t int64x2_t
<Use Scalar
Unsigned Integer or (8b uint8 t uint8x8_t uint8x16_t
Fixed Point 16b uint16_t uintléx4 t  |uintl6x8 t
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Table 3.11. Advanced SIMD Intrinsic Data Types (cont.)

Type Element Size Scalar 64b Vector 128b Vector
32b uint32_t uint32x2 t uint32x4_t
64b uint64 t uint64xl t uint64x2_t

<Use Scalar

Galois Field 8b poly8 t poly8x8 t poly8x1l6_t

Polynomial 16b polyl6 t polyléxd t polyl6x8 t
64b poly64 t poly64xl t poly64x2 t
128b polyl28 t N/A N/A

In addition to these basic types, there are also "multi-vector” types that are structures
of 1-4 vectors together, with an additional "xM" specifier at the end of the type

name to specify how many vectors are encoded. An example of this kind of type is
float32x4x4 t. Thevarious float32x4 t sub-vectors inside are defined as val[<M>].

float32x4x4_t floatVector;

float32x4 v2 = floatVector.val[2];

While they can be used for other purposes, these special types are generally only
necessary when using LD<n>, ST<n>, TBL<n>, Of TBX<n> instructions, which can have
multi-vector sources or destinations (destination vectors for L.Dn, vectors to be stored
by sT<n>, and input tables for TBL<n>/TBX<n>). Note that the M=1 versions of these
instructions just use normal vectors (e.g. £loat32x4_t) for input/output instead of x1
multi-vectors (e.g. float32x4x1_t). Those multi-vector types with just one vector are

seldom used.

3.4.2 Computation Intrinsics: A General Guide
Most Advanced SIMD intrinsic operations follow a fairly straightforward naming
convention that translates the assembly- language instruction to a notation that works
well in C. This section describes some of the main rules used to write Advanced SIMD
assembly language using the intrinsic notation.

3.4.21 Basic Intrinsic Naming

Most of the intrinsics follow a straightforward naming scheme:

v<OP>[q|s|d][_high] <input type>

Each field has a well-defined meaning:

e <0P>: The Advanced SIMD assembly language mnemonic. The mnemonic does

not include the type specification prefix letter (s/u/F letters from Section 3.3.1,
"Overall instruction data type: (none) / BF / F/ S/ U") and half-select suffix (1/2 from
Section 3.3.18, “Lower-Half / Upper-Half: (none) /1/ 2 "). Most other prefix and suffix
letters are still included.
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* [ (none) | g|s|d]: The length of the vector. No letter here means the intrinsic works
with 64-bit vectors, or is used with narrowing/lengthening operations that work with
both 64-bit vectors or individual halves of 128-bit vectors. A g means that the intrinsic
works exclusively with 128-bit vectors. The s and d letters explicitly indicate 32-bit and
64-bit scalar operations in rare cases where there is a scalar intrinsic and so this length
indication is needed to avoid a naming conflict with a vector intrinsic.

e [ (none) | _high]: The half select. high is equivalent to the 2 suffix in assembly (as
described in Section 3.3.18, “"Lower-Half / Upper-Half: (none) /1/2").

e <input_type>: The source data type. These indicators are taken from the list in

Table 3.5: “"Vector Register Interpretation”, and specify both the type and size of the
sources, which need to be specified with the types from Table 3.11: "Advanced SIMD
Intrinsic Data Types". Note that the destination type, while often identical, may be
different, particularly for the various “narrowing” and “lengthening” instructions. For the
"widening" instructions that have two different sizes of inputs, this specifies the type

of the second source, which always has smaller data words; the first source has larger
data words. To reduce the need for casting between types, most “untyped” operations
like load/store, bitwise logic, and byte rearrangement come in versions for all Advanced
SIMD types, since these instructions are likely to be used with any type of vectors.

Consider the following variants of addition instructions. The first six show the equivalent
intrinsic functions for normal in-lane operations with different vector sizes, types, and

opcodes.

int32x2 t (64-bit vector) ADD : vadd s32
int32x4 t (128-bit vector) ADD : vaddg_s32
uint8x16_t ADD : vaddg_u8
float64x2_t ADD : vaddqg_f£f64
int32x4_t SHADD : vhaddg s32
uint8x16_t UQADD : vgaddg u8

The next four show variants that include lengthening and widening operations. These
may require casting between 128-bit and 64-bit vectors depending on the specific
intrinsic function. Operations that only use the lower half of 128-bit vectors, which

is normal for the sources of the base (non-2) versions of lengthening and widening
operations, always use 64-bit vector types for their input, instead of full 128-bit vectors.
To do the casting, use vget low <type> intrinsics (see Section 3.4.4.5, "Vector Length
Conversion Operations”).

int32x4_t to int64x2_t SADDL : vaddl_s32 (cast both inputs to int32x2_t)
int32x4_t to int64x2_t SADDL2 : vaddl_high s32

int64x2_t+int32x4_t to int64x2_t SADDW : vaddw_s32 (cast 32b input to int32x2_t)
int64x2_t+int32x4_t to int64x2_t SADDW2 : vaddw_high_ s32

The next two show variants that include narrowing operations. The result from the base
(non-2) versions of narrowing operations is always a 64-bit vector type. It is usually fed
immediately into the high (2) version.

intl6x8_t to int8x16_t RADDHN : vraddhn_sl6 (output is 64-bit int8x8_t)
int16x8_t to int8x16_t RADDHN2 : vraddhn _high s16 (supply base version destination
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as first input to merge with
high version)

Horizontal (v) operations follow normal rules, but take only single vectors as inputs and
have scalar outputs.

int32x4 t to int32 t SADDV : vaddvg s32
int32x4 t to int64_ t SADDLV : vaddlvqg s32

Exceptions to basic naming conventions exist.

Intrinsic Functional Notation

Following C protocols, the various intrinsics use a functional notation. Input source
variables are supplied like the inputs to C functions, and the destination result is
supplied as a functional output:

destination = <intrinsic_name>(sourcel,source2,...)

Each of the sources is listed in the same order as the source registers for the matching
assembly-language instruction. Unlike raw assembly language, this notation allows for
things like nested intrinsics, such as a whole tree of ADDs on one line that reduces 16
signed 32-bit values to a single scalar:

sum = vaddvq s32(vaddqg s32(vaddg_s32(inputl, input2),vaddqg s32(input3,inputd)));

One case that does not map precisely to this model is destructive operations that use
their destination as an additional source, such as most of the multiply-accumulate
instructions (see Section 2.7, "Separate Source and Destination Registers " and
Section 3.5.4, “Fused Op with Add/Accumulate Instructions (Integer and ASIMD&FP
Types)"). In these cases, the destination (also used as a source) is included as the first
source operand:

dest_as_result = <intrinsic_name>(dest_as_src,sourcel,source2,...);

Another common case is the base-and-'2' sequence of narrowing operations, where the
'2' operation merges the result of the base operation in the lower half of its destination
register with results of the '2' operation put into the high half. Using the example from
the previous section, the base version is often placed in the first parameter field of the
high version intrinsic:

result = vraddhn high s16 (vraddhn sl6(srclLo,src2Lo),srclHi,src2Hi);

The normal return value for the intrinsic function is used for specifying the destination
variable. The RADDHN2 assembly instruction uses a single register that serves as both
the first source (dest_as_src) and the destination (dest_as_result), while the intrinsic
code does not. However, the compiler will allocate and manage registers correctly to
match the instruction requirements.
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3.4.3

3.4.3.1

3.4.3.2

3.4.3.3

For instructions that require immediate values, the immediate values are specified as
integer constants as the last input to the intrinsic. A compilation error will occur if these
values do not evaluate to legal integer constants at compile time.

Computation Intrinsics: Unusual Cases

Intrinsics for the majority of computation instructions can be synthesized using the rules
in the previous section. However, there are a number of cases among mathematical
operations that exhibit exceptions to these rules.

Paired Operations

For historical reasons dating back to ARMv7, the p for paired operations is applied as a
prefix instead of a suffix:
vp<op>[q]_<type>

For example:

2xint32x4 t to int32x4 t SADDP : vpaddg s32
int32x4_t to int64x2_t SADDLP : vpaddlg s32

Comparison Operations

Advanced SIMD comparison instructions have two unusual cases. The first is a reversal
of letters from the assembly-language FAC<cond> instructions, also due to ARMv7
historical precedent:

vca<cond>[qg]_<type>

Another exceptional case is for the Advanced SIMD instructions that perform a
comparison against an immediate value of #0. These are handled by adding a z to the
end of the intrinsic after the q suffix:

ve<cond>[g]z_<type>

Since the zero is embedded in the name of the intrinsic, there is no need to supply an
explicit #0 immediate input to these intrinsics; they therefore only need one input vector.

Multiplication by Element or Scalar Operations

Advanced SIMD vector-vector multiplications follow the normal notation. However
multiplications between a vector and a single element have a unique notation:

v<multiply name>[qg]_ lane[q]_ <type>

The extra lane[q] notation indicates that only a single element from the final

(and optionally o-sized) vector should be used in the multiplication. These multiply
instructions require an extra input — an integer constant — to indicate which element to
select. For example:
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3.4.35

vmulg laneq_£32(int32x4_t, int32x4_t, int32)

For lengthening operations, the high half '2' output of the lengthening element
multiplication requires a _high indicator in the middle of the intrinsic, between the name
of the multiply and the lane select:

v<multiply name> high lane[q] <type>

These forms are often used in sequences of multiplication operations that pick out
successive elements from a vector, for example when performing matrix multiplications.

Instructions that multiply a vector by a constant scalar value also exist:

v<multiply name>[qg]_n <type>

For example:

float32x4 t v_in
float32 t s_in
float32x4 t v_out

5.0;
vmulg n £32(v_in, s_in);

The final input to these operations is not a vector, but a scalar value of the same type as
the input vector elements. The compiler typically loads the constant into element O of a
vector, and uses the "by element" flavor of multiply instruction, but the compiler is free
to use alternate optimization solutions.

Shift-by-Immediate Operations

Advanced SIMD shift-by-immediate instructions always have a _n after the nhame of the
intrinsic:

v<shift name>[q] n <type>

The immediate shift amount is the final input to the intrinsic. Variable-amount shifts do
not have this n specifier, and instead require a vector as their final input. This naming
scheme allows clear distinctions between immediate-amount and variable-amount
shifts with similar names.

Type Conversion Operations

Because conversion (cvT) instructions involve multiple data types, they have a unique
format:

vevt[a|m|n|p|z][g]_<output type> <input type>

The type specifier at the end of the intrinsic specifies the input type, like usual. Since the
input type does not define the output type for these instructions, an additional second
type specifier is also required. This output specifier is placed just before the input
specifier. Optionally, an explicit rounding mode letter (see Section 3.3.14, “FP Rounding
Mode: A/I/M/N/P/X/Z") may be added as well.
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Because the sizes of the two types do not always match, several types of cvT
instructions come in narrowing (when the destination is half the length) or lengthening
(when the destination is twice the length) versions that require an additional high half
'2'instruction to complete the operation (from Section 3.3.18, “Lower-Half / Upper-Half:
(none) /1/2"). Unlike with most intrinsics that perform size changes, the L. and N
suffix letters from Section 3.3.16, “Narrow, Long, Wide: N /L / W" are not used in the
intrinsics, since the choice of types already imply lengthening or narrowing. The high
half '2' versions are selected using high specifiers.

vevt[x] _high <output type> <input type>

While the notation is somewhat different than most mathematical operations, these are
still almost always used in pairs with the base (non-'2") version. In this first example,

a pair of instructions is used to perform 64-bit-to-32-bit floating point conversion,
packing two vectors with 64-bit elements into one vector with 32-bit elements.

v_£32 = vevt_high £32 f64(vevt £32 f64(vl _f64),v2 £f64);

Similarly, a pair of instructions can lengthen one vector with 32-bit elements into two
vectors of 64-bit elements.

vl_£64
v2_£64

vevt_f64_f£32(v_£32);
vevt_high f64_f£32(v_£32);

Another variation of cvT is the family of conversions between fixed-point and floating
point, which include an immediate value to specify the location of the binary point in

the fixed-point number. These intrinsics, indicated with an additional n in the middle, all
implicitly assume the z rounding mode, because that is the only one offered for this type
of Advanced SIMD conversion.

vevt[g] _n_<output_ type> <input_ type>

The first input is the vector to be converted, while the second is a constant value
specifying the location of the binary point within the fixed-point value, whether that type
is used in the source or destination.

Finally, the related INT instructions are triggered using an intrinsic with a completely
different name, rnd:

vrnd[a|i|m|n|p|x|z][q]_<type>

As with the cvT intrinsics, the letters for the various explicit rounding modes can be
added if needed. The output type of these instructions is always in the same floating
point type as the input, so there is no need for a second type.

Vector Manipulation Intrinsics

Vector element-wise or byte-wise manipulations often have names that do not
correspond with the equivalent Advanced SIMD instructions. Further, some do not
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even match one-to-one with instructions, but instead just specify the movement that
must occur, and the compiler will insert instructions as needed. Sometimes no actual
instructions are needed (e.g. most type casts between vector types), so these intrinsics
are just for clarity.

3.4.41 Element Insertion and Extraction Operations

One of the first steps common to many Advanced SIMD routines is to assemble vectors
from a number of scalar elements. The simplest option is to load a scalar into a
Advanced SIMD unit register and cast it to a vector with a “create” intrinsic:

<vector_ dest> = vcreate <type>(<scalar_ src>);

For example:

int32x2_t  vcreate_s32(uint64_t a); // VMOV d0,r0,r0

The input could even be a UINT64 C(...) constant. With these intrinsics, the resulting
vector has the scalar input in lane #0 while the other lanes are zeroed out. Note that
there is no 128-bit variant of these instructions; the result is always a 64-bit vector. This
is quick and easy, since it does not require an actual instruction.

To set values in other lanes or insert a value into the middle of an existing vector, use a
“set lane" intrinsic:

<vector_dest> = vset[q]_lane_<type>(<scalar_src>,<vector_src>,<dest_lane#>);

This intrinsic inserts a scalar value into the supplied existing vector at the requested
lane number, using an 1INs instruction. A sequence of these intrinsics can be used to
populate an entire vector from an existing group of scalar values. Alternately, if the
source values are already part of existing vectors, then a “copy” intrinsic is needed:

<vector_dest> = vcopy[q]_ lane[q]_ <type>(<vector_dest>,<dest_lane#>,
<vector_src>,<src_lane#>);

This performs the same operation as the “set” intrinsic, also using a type of INS
instruction, but takes a vector and lane number as its source. Note the two separate
optional g specifiers. The first is used to indicate that the destination vector is 128 bits,
while the second indicates that the source vector is 128 bits. Unlike with most vector
instructions, they do not need to be the same.

Finally, when vector computation is complete and a scalar value needs to be extracted
from a vector, the “get lane” intrinsic can be used:

<scalar dest> = vget[q] lane <type>(<vector src>,<src_lane#>);

This straightforward instruction translates into a vector-to-scalar Mov operation. There
are also synonyms for these operations that use the “dup” intrinsic name, instead:

<scalar dest> = vdup<b|h|s|d> lane <type>(<vector src>,<src lane#>);

Copyright © 2024 Apple Inc. | 2024-03-21
62



Apple Silicon CPU Optimization Guide
ISA Optimization: Advanced SIMD and FP Unit Vector Manipulation Intrinsics

3.4.4.2

3.4.4.3

While these work, there should be little or no reason to use them. Note that the b/h/s/d
letter is not optional, and is needed to differentiate this usage from the more traditional
"dup” operations described in the next section.

Element Duplication Operations

An alternate way to create a vector from a scalar value is to duplicate a single scalar
value across all element lanes within the vector, using a single pup instruction. If the
original value is in a scalar variable, there are two equivalent intrinsics to perform the
task:

<vector_dest>
<vector_dest>

vmov[g]_n_<type>(<scalar_src>);
vdup[g]_n_<type>(<scalar_src>);

All lanes are set to the input scalar value. There is no difference between the two, so use
whichever seems more appropriate. The "dup" variety is recommended, since it makes
the function clearer. The "mov" variant may be more appropriate if used in a manner
similar to the “create” intrinsic (but populating the upper lanes instead of zeroing them).

There is also a version that takes a vector input, but only in the “dup” variety:

<vector_ dest> = vdup[q] lane[q] <type>(<vector_ src>,<src_lane#>);

Analogous to the aforementioned “copy” intrinsic, this acts just like a vdup n, but takes
a vector and lane number as its source instead of a scalar. Note the two separate
optional g specifiers. The first is used to indicate that the destination vector is 128

bits, while the second indicates that the source vector is 128 bits. As with the “copy”
intrinsic, these do not need to match in code that uses both vector sizes.

Narrowing and Lengthening Element Operations

Variants of Mov intrinsics are used in place of the assembly instructions for narrowing
and widening vector elements. For example, the narrowing XTN[ 2], SQXTN[2],
UQXTN[ 2], and SQXTUN[ 2] become the following:

<vector_dest>
<vector_dest>

v[glmov[u]n_<type>(<vector_src>);
v[iglmov[u]ln high <type>(<vector_dest>,<vector_src>);

The first intrinsic takes all elements of the vector source and packs them down into the
lower half of the destination vector, leaving the upper half zeroed. The second intrinsic
can then be used to pack all elements of a second vector source into the upper half of
the destination vector.

The optional q intrinsic prefix specifies a saturating conversion, and indicates one of
SQOXTN[2], UOXTN[2], and SQXTUN[2].

Without the u intrinsic suffix (prior to the 'n'), the saturating conversion retains its signed
or unsigned type from source to destination, and therefore maps to either sQXTN or
UoxTN. With the 'u’ suffix, the intrinsic maps to soxTuN, which reads signed sources and
saturates them to unsigned destinations.
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3.44.4

3.4.4.5

Mirroring this, there are similar Mov macros to use lengthening ssHLL[2] #0 (alias
SXTL[2]) and USHLL[2] #0 (alias UXTL[2]) instructions, which do the opposite:

<vector_dest>
<vector_dest>

vmovl <type>(<vector_ src>);
vmovl high <type>(<vector src>);

These intrinsics just widen each element, zero-extending or sign-extending from the
upper bit as appropriate for the supplied input type.

Note that these intrinsics perform simple narrowing and lengthening, with no shifting
involved. In order to do things like maintain the position of binary points, it is often
necessary to use SHLL and SHRN computation instructions to shift the bits of each data
element as the element is narrowed or lengthened.

Type Casting Operations

The “reinterpret” intrinsics perform a typecast from one vector type to another:

<vector dest> = vreinterpret[q] <dest type> <src_type>(<vector src>);

Note that these intrinsics require type indicators for both the source and destination. No
actual instructions are required to do this “operation”, it is purely a C typecast. In some
cases, traditional typecast semantics may also be supported:

<vector_dest> = (<dest_type name>)<vector_ src>;

When supported, type casts require the full destination type (e.g. int16x8_t) instead of
just the short type indicator (e.g. s16).

Vector Length Conversion Operations

Another type of vector casting is movement between 64-bit and 128-bit vector types.
These types of manipulations sometimes require explicit instructions, but sometimes do
not. The intrinsics abstract away the internal implementations of these transformations,
so that programmers only need to specify what vector conversions are desired, but not
necessarily how.

Going from 64-bit to 128-bit, the operation involves taking two 64-bit vectors and
'combining" them into a 128-bit vector:

<128b_dest> = vcombine <type>(<64b src low>,<64b src_high>);

This operation just merges the two supplied 64-bit vectors together into a vector that is
twice the length, with one original vector occupying the low-order half of the destination
while the other occupies the high-order half.

In the reverse direction, a pair of intrinsics is needed to extract out the low-order and
high-order 64-bit halves from a 128-bit vector:

<64b dest low>
<64b_dest_high>

vget low <type>(<128b_src>);
vget high <type>(<128b _src>);
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3.4.4.6

3.4.4.7

Each of these intrinsics just extracts the requested half of the 128-bit vector as a 64-bit
vector, using the type on the same row of Table 3.11: “Advanced SIMD Intrinsic Data
Types".

Byte Rotations Operations

The “extract” operation allows a vector to be extracted from any bytewise rotation of a
pair of vectors. This instruction is most often used for realigning vectors that have been
read in an unaligned fashion, but can also be used for a wide variety of vector rotations.
The format of the operation follows standard guidelines:

<vector dest> = vext[q] <type>(<vector_ src low>,<vector src_high>,<shift amt>);

The result will be the high-order elements of <vector_src_low>, rotated down

to the low-order end of the destination vector, and the low-order elements of

<vector_ src_high>, rotated in to the high-order end of the destination. The overall
rotation is controlled by <shift amt>. These operations all use the ExT Advanced SIMD
instructions, which only come in byte-typed versions with a shift amount of 0-15 bytes.
The intrinsics automatically scale this amount to match the type:

* Half precision: shift amounts of 0-7 halfwords for 128-bit vectors (0-3 for 64-bit
vectors)

* Single precision: shift amounts of 0-3 words for 128-bit vectors (0-1 for 64-bit
vectors)

* Double precision: shift amounts of 0-1 doublewords for 128-bit vectors (doubleword
operations with 64-bit vectors do not perform any operation).

Note that due to the allowed range of immediate values, the result can be the entire
<vector_ src_low> vector (effectively making this a Nop when the shift amount is 0), but
can never be the entire <vector_src_high> vector.

Data Transposition Operations

Three main data transposition instructions are available in the Advanced SIMD
instruction set:

* Transpose (TRN): Selects and packs even (or odd) numbered elements from two
vectors. These are designed to facilitate matrix transposition (see Section 3.5.7.1,
“Byte Shuffle Example: Transposing Matrices").

* Unzip (uzp): De-interleaves two vectors of interleaved data.
* Zip (z1P): Interleaves two vectors of de-interleaved data.

These operations are usually used in "primary" low half (‘1') and "secondary" high half

('2") pairs to mix two vectors together. However, there are also other ways to use these
instructions for more arbitrary data transformations (see Section 3.3.18, “Lower-Half /

Upper-Half: (none) /1/ 2 " and Section 3.5.7, “Shuffle and Permute Instructions”). The
intrinsics or these instrucitons is straightforward:

<vec_dest low>
<vec_dest_ high>

vitrn|uzp|zipll[q] <type>(<vec_src_ low>,<vec_src_high>);
vitrn|uzp|zipl2[q] <type>(<vec_src_ low>,<vec_src_high>);
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3.4.4.8

3.4.49

There are also older versions of these intrinsics that produce multi-vector type output:

<vec dest x2> = v[trn|uzp|zip][q] <type>(<vec src low>,<vec_src_high>);

These just compile into pairs of equivalent instructions, so using the explicit '1'/'2"
instructions is generally recommended to avoid the hassle of dealing with multi-vector
types (see Section 3.4.1, "C Vector Types") at the instruction output. Otherwise,
performance is no different.

Table Operations

The most complex vector permutation operations in the Advanced SIMD instruction

set are the two "“table vector lookup"” operations. These allow a vector to be arbitrarily
assembled from a “table” of bytes in 1-4 source vectors, based on the byte positions
selected in a “control” vector. The table vector lookup TBL instruction assembles the
output just using the input table, while the table vector lookup extension TBX instruction
can also merge in existing bytes from the destination register, which is a separate input
to the intrinsic. The invocations of these are very similar:

<vector_dest>
<vec_dest_as_output>

vgtbl<#>[q]_<type>(<multi vector_table>,<vector_control>);
vgtbx<#>[q]_<type>(<vec_dest_ as_input>,<multi_vector table>,
<vector_control>);

Unlike most untyped operations which have intrinsics available in all types, only the
three "byte" types are supported for these instructions (i.e. _p8, s8, u8). Hence, the
destination and table inputs should always be in poly8x8 t, poly8x16 t, int8x8 t,
int8x16_ t,uint8x8 t, Or uint8x16 t types. Intrinsics do not exist for other types, so
casting will be necessary if you want to use TBL or TBX with non-byte type vectors.
Meanwhile, the control vector is uint8x8 t oruint8x16 t for boththe psand us
cases, or int8x8 t or int8x16_t forthe s8 case.

The table type can vary in its structure. If it only contains 1 vector, it is just a standard
vector type. However, if it contains 2—-4 vectors, then they are encapsulated in a
“"multi-vector” type (see Section 3.4.1, “C Vector Types"), and passed in together as

a structure. The number of vectors in the table is always specified by the <#> field in the
intrinsic.

The use of 64-bit vectors and 128-bit vectors is particularly complex with these
intrinsics. The g suffix determines whether or not the destination and control vectors
are 64-bit or 128-bit. Meanwhile, the special g field at the beginning of the intrinsic
name indicates that the 1-4 vectors making up the input table are always 128-bit. It

is required to avoid a collision with old intrinsics for the equivalent ARMv7 operations
without this g, which used 64-bit vectors for their tables. While still defined, intrinsics for
these old operations should generally not be used in ARMv8 code.

Load/Store Operations

When using intrinsics, it generally is not necessary to insert any explicit load or store
operations. Write the actual computation with intrinsics using properly typed variables
in the language. The compiler will automatically insert loads or stores to move data
between memory and registers when it performs register allocation. Load and store
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intrinsics force the moment of data to and from memory that compiler may have
otherwise been able to optimize.

However, loads and stores that interleave data are the primary exception (see
Section 3.3.10, “Load/Store by Element Interleaving Factor:1/2/3/4"):

<vector_dest> = v1d<#>[q]_<type>(<vector_ptr>);
(no ret type) vst<#>[q]_<type>(<vector ptr>,<vector_src>);

These operations load or store interleaved data from/to the address indicated by
vector ptr. As with table operations, the nature of the vector dest and vector src
operands used with these intrinsics varies depending upon the <#> factor in the
instruction. With a value of 1, these are just standard vectors, but with values of 2-4
"multi-vector” types of the specified length are used instead (see Section 3.4.1, “C
Vector Types"). In addition to specifying the length of the multi-vectors, the <#> factor
also specifies the de-interleaving pattern of elements during loading or interleaving
pattern of elements during storing. For example, a typical use of .D3/sT3 would be

to load 16 interleaved RGB pixels from memory into three separate red/green/blue

registers:
uint8x16x3_t pixels = v1d3q u8(srcPixelPtr);
uint8x16_t redvVec = pixels.val[0];
uint8x16_t greenVec = pixels.val[l];
uint8x16_t bluevec = pixels.val[2];

. compute with colors separately here ...
pixels.val[0] = redVec;
pixels.val[l] = greenVec;
pixels.val[2] = blueVec;

vst3gq uB8(destPixelPtr,pixels);

Interleaved RGBa pixel information can be processed with analogous 1.D4/sT4
combinations. While complex numbers are typically loaded in interleaved form in order
to leverage the complex number instructions (see Section 3.3.7, “Complex Number
Arithmetic: C "), they can be de-interleaved and re-interleaved using the L.D2/sT2
instructions (likely with _£32 or _£64 intrinsic types).

Note that the de-interleave load and interleave store instructions can be complex

and somewhat slow and should only be used when necessary. However, they are
usually more efficient than custom de-interleaving and re-interleaving code sequences,
especially for the L.D3/sT3 variant.

The second varieties of element load/stores are the “lane” versions that load a scalar
and insert it into a supplied vector at the requested location, or extract a single vector
element and store it to memory. These are the equivalent of a scalar L.DR followed by an
INS operation to the selected lane, or the reverse MOV-STR sequence:

<vec_dest_as_output> = vld<#>[q]_lane_<type>(<scalar_ptr>,<vec_dest_as_input>,
<dest_ lane#>);

(no ret type) vst<#>[q]_ lane <type>(<scalar ptr>,<vector_src>,
<src_lane#>);

The load operation inserts the loaded element into vec_dest_as_input at the
requested lane, while the store extracts the element from the requested lane of
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Advanced SIMD Coding Recommendations

vector_src and stores it. These operations can be a very convenient way to encode
these scalar load/stores in a fairly efficient way, although using separate instructions is
often equally efficient.

Finally, one can use LD<#>R operations that effectively combine a scalar load with a
series of DUP instructions afterwards:

<vector_dest> = v1d<#>[q]_dup_<type>(<scalar_ ptr>);

These operations just load the scalar indicated by scalar ptr, and then duplicate it
across the vector_dest. The <#> value in this case is just a number of vectors to copy
the element across. The vector_ dest operand is either a standard vector, with a <#>
value of 1, or a "multi-vector” type with values of 2-4 (see Section 3.4.1, “C Vector
Types"). As with the “lane” versions, these are basically equivalent to just loading the
value as a scalar and using one or more DUP instructions.

Advanced SIMD Coding Recommendations

This section describes a variety of useful coding tips for use with vectorized code
written using Arm Advanced SIMD instructions.

Manage Architectural Register Limits

Proper architectural register allocation is an important part of maximizing performance
for any software routine, but it is particularly important in small, tight loops consisting of
high-density code that executes many instructions per cycle. Typically, at any point in
execution of such a loop, there are many variables that are "live", that is, they contain
values that are needed by subsequent instructions. The compiler, or the developer in
the case of loops written in assembly language, must map these variables into registers.
When there are insufficient registers to hold all of the live values, some values must

be spilled to memory and filled back into registers before they are needed. However,
the round trip time for a spill-fill sequence can be significant. The spill portion isn't
always needed if the value can be simply reread from memory (e.g., a constant) when
needed. While this is faster than a spill-fill sequence, the additional loads still consume
bandwidth and potentially add undesired latency.

Advanced SIMD routines tend to push register allocation to the limit, to the point where
these spill-fill delays can sometimes set the critical path through the loop. This is
because Advanced SIMD code tends to have a few key characteristics that combine to
increase register pressure when performance is crucial:

* Tight inner loops: The performance-critical inner loops of Advanced SIMD code
often tend to be rather short. As a result, if any registers are spilled out to memory
in the loop body, the loads to read them back in will inevitably arrive soon thereafter.
There is little room within the loop body to move the spills and fills a “safe” distance
apart.

* High instructions per cycle (IPC) code: For maximum performance, inner loops of
Advanced SIMD programs must usually contain very dense code that is able to sustain
an execution rate of 5-8 instructions every cycle, mostly across the Advanced SIMD
and load/store execution units.
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* High latency instructions: Advanced SIMD and load instructions usually take 2—
5 cycles each to perform, so many parallel chains of independent instructions are
usually needed to supply enough independent instructions to meet the execution
rate of 5-8 instructions per cycle. In the worst case, it may be necessary for
software to keep on the order of 20 parallel streams of instructions active in order
to keep the Advanced SIMD and load/store units fully utilized. Out-of-order hardware
will provide some parallelism automatically as it runs ahead and decodes multiple
parallel loop iterations. However, run ahead does not fill the instruction window
with independent instructions immediately. Further, the code structure may contain
inadvertent structural hazards such as loop carry chains that prevent automatic
parallel execution. For more information on how the CPU executes instructions, see
Section 4.3, "Processor Pipeline Fundamentals”.

* Extensive loop unrolling and interleaving: In order to provide enough additional
inter-instruction parallelism, software will often contain unrolled loops. The unrolling
process creates multiple copies of the loop body that can then be interleaved with
each other to provide enough independent instructions at any point in time. While this
technique can be helpful at exposing useful parallelism, each copy of the loop body
also requires its own copy of the “live"” register state. The number of "live" registers
thereby grows proportionally with the degree of unrolling.

* Constants: Another factor that can reduce the number of vector registers available is
the need to devote registers to holding constant values such as zeroes, filter weights,
byte masks, permutation tables (for TBL and TBx instructions), and the like. While
these registers do not need to be replicated as loops are unrolled because they can be
shared across all loop iterations, they can still occupy a significant number of registers
that cannot be used for “live"” values within each iteration.

Combining these factors, it is possible (and even likely) that the number of live values
and constants exceeds the number of architectural registers available in the ISA.
And, that using spill stores and fill loads to alleviate register pressure may consume
instruction bandwidth while possibly adding in new critical paths through memory.

There is no universal solution for this problem. However, when coding the inner loops

of Advanced SIMD algorithms, keep register constraints in mind. Try to minimize the
number of live variables likely to need register allocation at any point, and keep in mind
how loop unrolling may increase the number of live variables. In some cases, rearranging
code within the loop to shorten the lifetime of “live” values may help. But ultimately loop
unrolling may need to be limited to what the register file can support. In some cases,
the maximum number of unrolls allowed by architectural register limits may be less than
what is truly desired to attain maximum parallelism, but if loop unrolling triggers register
spill-fill activity, it will usually be counterproductive. Try to keep the number of live
variables limited to ~25 (out of 32 available) at one time in order to maintain maximum
performance, because a few registers are likely needed for transient values.
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Recommendation: Balance Exposed Parallelism with Architectural
Register Limits:

Unrolling and interleaving of iterations creates instruction-level parallelism that
is easy for the processor to exploit to achieve high performance. However,
these techniques often require the use of many simultaneous variables. When
the number of variables exceeds the architectural limit, the compiler will

spill variables to memory and fill them back when needed, resulting reduced
performance due to high pressure on the load and store unit. Maximize unrolling
and interleaving while minimizing spills and fills. Trial-and-error may be required
to find the best balance point.

[Magnitude: Medium | Applicability: Medium]

3.5.2 Minimize Moves Between Integer and Vector Registers

Movement of data between integer and vector registers requires several cycles. Load

directly into vector registers and use Advanced SIMD integer operations for very short
sequences. See Section 4.5.1, “Movement of Data from General Purpose Registers to

Vector Registers” for additional details.

3.5.3 Horizontal Arithmetic and Test Instructions

When performing “horizontal” reductions across vectors, the Arm ISA offers a variety of
options. For background, see Section 3.3.19, “Cross-Lane Paired or Horizontal: P / V".

There are a basic set of “paired” operations that operate on adjacent vector elements:
* Scalar: dest_el[0] = src_el[0] op src_el[l]

* Vector: dest el[n] = src_el[2n] op src_el[2n+1], from two concatenated
source registers.

Instructions include:

* ADDP

* SADALP, SADDLP, UADALP, UADDLP
* SMAXP, SMINP, UMAXP, UMINP

* FADDP

* FMAXNMP, FMAXP, FMINNMP, FMINP

There are also versions of most of these operations that work "across all" elements
(lanes) of a vector:

¢ ADDV

* SADDLV, UADDLV

¢ SMAXV, SMINV, UMAXV, UMINV

* FMAXNMV, FMAXV, FMINNMV, FMINV

Note that it is possible to synthesize unofficial “horizontal” versions of the three
remaining "paired" instructions with one- or two-instruction sequences:
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Synthesized Fappv:

FADDV.S/2S: FADDP.2S Vx, Vx, Vany
FADDV.S/4S: FADDP.4S Vx, Vx, Vany

FADDP.2S Vx, Vx, Vany
FADDV.D/2D: FADDP.2D Vx, Vx, Vany

Synthesized sapaLv:

SADDLV.H/S/D H/S/Dtemp, Vx.8B/16B/4H/8H/4S
ADD Ddest, Ddest, Dtemp
; must interpret signed result as H/S/D size to match SADDLV

Synthesized uapaLv:

UADDLV.H/S/D H/S/Dtemp, Vx.8B/16B/4H/8H/4S
ADD Ddest, Ddest, Dtemp

The "any" registers can contain anything, because those vector lanes are ignored

in the final result. Use registers with constant zeroes to avoid accidentally including
subnormals or NaN values or creating any unintended incoming register dependencies.
The signed result for the synthesized sapaLv and UADALV must be interpreted using

the H/S/D size of the saDDLV/UADDLV result, and are not actually D-sized. In fact, the
SADALV output can only be interpreted using the sappLv H/S/D size unless one explicitly
sign-extends the result out to longer sizes.

With these operations, Arm ISA cores can perform tests on vectors fairly efficiently.
Often in vector code, it is necessary to branch if any lane of a vector holds a special
value, or all lanes hold a special value. For example:

Branch if any lane of VO is zero:

UMINV.16B Bl, VO

FMOV w0, S1 ; UMOV may be more “natural” but FMOV is faster because
; it does not perform any conversion

CBZ W0, target

Branch if any lane of VO is non-zero:

UMAXV.16B B1l, VO
FMOV w0, S1
CBNZ W0, target

Branch if all lanes of VO are zero:

UMAXV.16B Bl, VO
FMOV w0, Sl
CBZ W0, target

Branch if all lanes of VO are non-zero:
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UMINV.16B Bl, VO
FMOV w0, Sl
CBNZ W0, target

Similarly efficient code can be constructed for reductions and other cross-vector
operations.

The integer and brain floating point (b£1oat16) dot product instructions also sum across
the results of the lane multiplies. See Section 3.5.6, “Dot Product and Matrix Multiply
Instructions”.

Recommendation: Use Horizontal Instructions for Common Vector Tests:

Common any- and all-lane tests can be accomplished through the umMINv and
UMAXV instructions. The result can be moved to the integer registers where it can
be used as a branch condition.

[Magnitude: Medium | Applicability: Medium]

Fused Op with Add/Accumulate Instructions (Integer and
ASIMD&FP Types)

The Arm ISA offers a limited set of "fused" instructions that combine an operation with
an add or accumulate — for example, FMLA, is a floating point fused multiply-add to
accumulator. The processor decodes, issues, executes, and retires these instructions as
single pops for increased computation efficiency.

Some fused two-operation instructions use three source registers and a separate
destination register. This style of instruction is used for fused instructions that execute
on the Integer Execution Unit. For example:

* MaDD: Multiply-Add multiplies two integer register values, adds a third integer register
value, and writes the result to the integer destination register.

Others, as noted in Section 2.7, "Separate Source and Destination Registers ", use

2 source registers and a third combined source+destination register. This style of
instruction is used for Advanced SIMD and FP instructions, including those that operate
on integer typed-elements. For example:

* MLA: Multiply-Add to Accumulator multiplies corresponding integer elements in the
vectors of the two source ASIMD&FP registers, and accumulates the results with the
vector elements of the destination ASIMD&FP register.

In this section, "op-add" refers generically to all relevant instructions, whether they add
to a separate destination or into an accumulator.

There are several benefits to op-add instructions:

* Increased decode and issue throughput: All op-add instructions effectively
combine two operations. As long as both operations are useful, combining them in
the same instruction effectively doubles throughput of basic operations throughout
the processor.

* Lower overall latency: In many cases, the op-add instruction executes with the
same latency as an instruction that only executes the base op. However, the latency
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through the add input may be longer that with individual op and add instructions.

For instance, the FMLA (4 cycle latency) executes the equivalent of an FMUL (4

cycle latency) followed by an FADD (3 cycle latency). (See note about accuracy and
rounding below.) While the overall latency is 4 cycles instead of 7, the latency through
the add input is 4 instead of 3. This may impact the throughput if the critical path

is through the add input. However, the bandwidth savings are usually significant for
using FMLA, and the critical path can often be alleviated by unrolling and restructuring
the algorithm to have 4 independent chains of FMLAS that are combined at the end.
See Appendix A, Instruction Latency and Bandwidth.

* Increased accuracy for FP operations: The floating point flavors of op-adds are
all multiply-accumulates. The processor performs no rounding step on the output of
the multiply prior to performing the addition. Because of this, the final result may
be slightly different than if the computation were performed with a discrete multiply
followed by a discrete addition. See note about the "-ffast-math" compiler flag
below.

* Reduced latency through the add/accumulator source (Integer Execution Unit
only): In the integer unit, an op-add instruction may be issued early, while the add
input is still being computed by a previous instruction. That input is only needed for
the final addition step, after the multiplication has completed and produced its result.
This can allow sequences of dependent adds/accumulations to be chained together
so that only one cycle per additional fused operation is required. Normally, each add/
accumulation in the chain would require three cycles each because they would not
begin executing until all of their source inputs are available.

Fused two operation instructions:
* Integer Execution Instructions:

° Multiply-add/subtract (separate destination): MADD, MSUB

° Multiply-add/subtract long (separate destination): SMADDL, UMADDL, SMSUBL, UMSUBL
* SIMD Execution Instructions:

° Integer absolute difference and accumulate (accumulator): SABA, UABA

° Integer absolute difference and accumulate long (accumulator): sABAL(2),
UABAL(2)

° Integer add and accumulate long pairwise (accumulator): SADALP, UADALP
° Integer shift right and accumulate (accumulator): SSRA, USRA, SRSRA, URSRA
° Integer multiply-add/subtract to accumulator (accumulator): MLA, MLS

° Integer signed saturating rounding doubling multiply accumulate (accumulator):
SQRDMLAH, SQRDMLSH

° Integer dot product (accumulator): SDOT, UDOT, SUDOT, USDOT

° Integer multiply-add/subtract long (accumulator): SMLAL (2), SMLSL(2), UMLAL(2),
UMLSL(2)

° Integer saturating multiply-add/subtract long (accumulator): SQDMLAL (2),
SODMLSL (2)
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° Integer matrix multiply-accumulate (accumulator): SMMLA, UMMLA, USMMLA
° Floating point multiply-add/subtract to accumulator (accumulator): FMLA, FMLS
° Floating point complex multiply accumulate (accumulator): FCMLA

° Floating point multiply-accumulate long to accumulator (accumulator): FMLAL(2),
FMLSL(2)

° Brain floating point (bf1loat16) dot product (accumulator): BFDOT

° Brain floating point (bfloat16) widening multiply-add (accumulator): BFMLALB,
BFMLALT

° Brain floating point (bf1oat16) matrix multiply-accumulate (accumulator): BFMMLA

High-level languages typically do not include native language support for multiply-
accumulate floating point mathematical operations. Instead, they require the generated
code to properly round the result after each floating point operation. Therefore,
compilers typically do not automatically synthesize "fused" instructions because of

the eliminated intermediate rounding step. However, many compilers including those

in the Xcode environment support the "-ffast-math" flag that allows the compiler to
generate these "fused" mathematical operations, as well as generally reorder floating
point mathematical operations.

Recommendation: Use Op-Add (e.g., Multiply-Accumulate) to Increase
Code Density and Reduce Latency:

Many algorithms rely on the common code construct that performs an operation
on two values and adds the result in with the result of previous operations. For
example: floating point multiply-accumulate (e.g., FMLA). The Arm ISA features
a number of these instructions beyond typical multiply-accumulate including
absolute difference-accumulate and shift-accumulate. Use of these instructions
reduces instruction count and latency compared with performing the op and

the accumulate each with dedicated instructions. In the case of floating point
multiply accumulate, increased accuracy is also achieved by not rounding the
multiply result prior to the accumulation.

[Magnitude: High | Applicability: Medium]

Complex Number Instructions

The Fcabpp and FcMLA instructions allow Advanced SIMD computation of the real

and imaginary components of complex numbers in parallel. Complex humbers are
represented as pairs of elements inside of vector registers, where a pair consists of
the real and imaginary components of the complex number (in other words, every even
element is a real component and every odd element is an imaginary component).

Without these instructions, most complex operations require de-interleaving and re-
interleaving the values into all-real and all-imaginary vectors using uzp and z1Ip
instructions. These instructions are much like the non-complex FADD and FMLA
instructions, but they have an extra immediate field to select a “rotation” of the vector’s
sign bits.
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Here are a few sample operations involving multiply-accumulate operations with dense
complex vectors and their complex conjugates:

Table 3.12. Example Complex Number Operations

Operation Instruction Sequence

A+=BxC FCMLA.<T> Va, Vb, Vc, #0
FCMLA.<T> Va, Vb, Vc, #90

A +=conj(B) xC FCMLA.<T> Va, Vb, Vc, #0
FCMLA.<T> Va, Vb, Vc, #270

A-=BxC FCMLA.<T> Va, Vb, Ve, #180
FCMLA.<T> Va, Vb, Ve, #270

A-=conj(B) xC FCMLA.<T> Va, Vb, Vc, #180

FCMLA.<T> Va, Vb, Vc, #90

Other combinations of FcaDD and FCMLA instructions with various rotations allow the
handling of any complex arithmetic.

Dot Product and Matrix Multiply Instructions

The dot product and matrix multiply instructions perform a large number of
multiplications with either 8-bit integers or 16-bit brain floating point BF1loat16 inputs.
The instructions then accumulate the results into accumulators arranged as four 32-bit
values, either integer or single precision floating point, respectively.

The M1 and A14 Bionic feature the signed and unsigned dot product instructions spot
and upoT. With FEAT 18MM, SUDOT and USDOT instructions were added in subsequent
generations in order to allow the use of mixed signed and unsigned values.

These instructions take two vectors of 8-bit inputs, multiply all of the corresponding
elements together, and then accumulate all of the results, unrounded, with the
corresponding elements of a vector of 32-bit integers. In other words, each instruction
performs 16 separate 8-bit x 8-bit multiplications followed by four parallel 32-bit
summations of five values each. Here is the operation expressed mathematically, where
A and B are vectors of 8-bit values and c is a vector of 32-bit values:

C[0] += A[0]*B[0] + A[1]eB[1] + A[2]*B[2] + A[3]*B[3]
C[1] += A[4]*B[4] + A[5]*B[5] + A[6]*B[6] + A[7]*B[7]
C[2] += A[8]*B[8] + A[9]*B[9] + A[10]*B[10] + A[11]eB[11]
C[3] += A[12]eB[12] + A[13]eB[13] + A[14]*B[14] + A[15]¢B[15]

These operations are particularly useful during filtering of 8-bit pixel values, since each
instruction performs many multiplies and adds in parallel without losing precision (no
rounding of intermediate values). The newer versions allow additional use cases, such
as when unsigned pixel values must be multiplied by signed filter weight values.

Alternately, use the “per element” version of these instructions to reuse a subset of the
second vector:

C[0] += A[0]*B[4i+0] + A[l]eB[4i+1] + A[2]eB[4i+2] + A[3]*B[4i+3]
C[1] += A[4]*B[4i+0] + A[5]eB[4i+1] + A[6]eB[4i+2] + A[7]*B[4i+3]
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C[2] += A[8]*B[4i+0] + A[9]eB[4i+1] + A[10]*B[4i+2] + A[1l1l]*B[4i+3]
C[3] += A[12]eB[4i+0] + A[13]eB[4i+1] + A[14]*B[4i+2] + A[15]B[4i+3]

The variable i is in the range of 0-3, specifying one of the four 32-bit lanes within the
second vector from which to select a group of four byte-size elements. This variant can
be useful if computing a dot product against a number of word-wide patterns, since four
of these patterns can be packed into a single vector to save registers.

FEAT 18MM provides the “matrix” multiply-accumulate instructions, sMMLA, UMMLA, and
UusMMLA. These instructions perform a matrix multiply operation of a vector containing a
2x8 matrix of 8-bit integers by another containing an 8x2 matrix of 8-bit integers, with
the individual integers either signed, unsigned, or both (in the latter case, the 2x8 is
unsigned, the 8x2 signed). Much like with the dot product instructions, these results are
then accumulated into a vector containing four 32-bit accumulators, arranged as a 2x2
grid.

C[0,0] += A[0,0]B[0,0] + A[O,1]B[1,0] + A[O,2]B[2,0] + A[O0,3]B[3,0]
+ A[0,4]°B[4,0] + A[O0,5]*B[5,0] + A[0,6]°B[6,0] + A[0,7]B[7,0]
C[o,1] += A[0,0]B[0,1] + A[O,1]B[1,1] + A[O,2]eB[2,1] + A[O0,3]B[3,1]
+ A[0,4]°B[4,1] + A[O0,5]*B[5,1] + A[0,6]°B[6,1] + A[0,7]B[7,1]
C[i1,0] += A[1,0]B[0,0] + A[1,1]B[1,0] + A[1,2]B[2,0] + A[1,3]B[3,0]
+ A[1,4]°B[4,0] + A[1,5]*B[5,0] + A[1,6]°B[6,0] + A[1,7]B[7,0]
Cri,1] += A[1,0]B[0,1] + A[1,1]B[1,1] + A[1,2]B[2,1] + A[1,3]B[3,1]
+ A[1,4]°B[4,1] + A[1,5]*B[5,1] + A[1,6]°B[6,1] + A[1,7]B[7,1]

Effectively, the matrix multiply instructions are the dot products of all four possible
combinations of the high and low halves of the A & B input vectors:

C[0] += A[0]*B[0] + A[1]*B[1] + A[2]*B[2] + A[3]*B[3]
+ A[4]%B[4] + A[5]*B[5] + A[6]*B[6] + A[7]*B[7]
C[1l] += A[0]*B[8] + A[1]*B[9] + A[2]*B[10] + A[3]eB[11]
+ A[4]°B[12] + A[5]¢B[13] + A[6]¢B[14] + A[7]*B[15]
C[2] += A[8]*B[0] + A[9]*B[1] + A[10]*B[2] + A[11]eB[3]
+ A[12]¢B[4] + A[13]*B[5] + A[14]eB[6] + A[15]¢B[7]
C[3] += A[8]*B[8] + A[9]*B[9] + A[10]*B[10] + A[11]*B[11]
+ A[12]B[12] + A[13]*B[13] + A[14]eB[14] + A[15]B[15]

Because each of the vectors are encoding entire matrices, there are no "per element”
versions of these instructions.

Brain floating point (BFloat16) dot product and matrix multiply instructions available
with FEAT BF16 operate similarly, but with fewer elements due to the larger element
size. See Section 3.5.8, “Brain Float Data Type (BFloat16) Operations” for a complete
list of available instructions.

Shuffle and Permute Instructions

The Advanced SIMD instruction set contains about a dozen byte-shuffling operations.
The TBL instruction can perform any combination of byte rearrangement using up to four
independent input vectors as input. The TBx performs the same operation, but can insert
select bytes arbitrarily into an existing destination vector. However, these instructions
are generally microcoded and therefore not necessarily fast. Also, the algorithm must
dedicate a register to contain the “mapping” control vector that specifies the input byte
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to select for each output byte position. For any scenario where a number of different
arrangements will need to be used regularly in quick succession, several registers may
have to be dedicated to holding these mapping control vectors.

As aresult, it is a better to use one of the "dedicated” byte-rearranging instructions
(DUP, EXT, INS, REV, TRN, UZP, and z1P) if possible. Table 3.13: "Advanced SIMD Shuffling
Operations” lists these various instructions, along with brief descriptions and a summary
of their primary intended uses.

Table 3.13. Advanced SIMD Shuffling Operations

Instruction

Description

Primary Use

DUP

Copies one vector lane of input to all lanes of output

Copying any single value across all
vector lanes

EXT #n

Appends 2 full vectors together, rotates n bytes, and
extracts 1 vector from the center

Aligning unaligned input; shifting
upper-lane elements down to lower
lanes

INS

Inserts a value from one vector lane of input into one
vector lane of output

Moving of one value around within
a vector

REV16

Reverses operand order, within halfwords

Switching endian-ness of half word
data

REV32

Reverses operand order, within words

Switching endian-ness of word
data

REV64

Reverses operand order, within doublewords

Switching endian-ness of
doubleword data

TBL

Selects bytes from 1-4 input vectors to assemble an
output vector, based on a selection mask vector

Assembling a vector, byte-by-byte

TBX

Selects bytes from 1-4 input vectors to insert into an
output vector, based on a selection mask vector

Inserting bytes into an existing
vector

TRN

Interleaves the even or odd numbered elements from two

input vectors

Transposing blocks of vectors

UzP

De-interleaves the even or odd numbered elements from

two input vectors

De-interleaving packed objects like
pixels into separate buffers

ZIP

Interleaves the low or high half elements from two input

vectors

Interleaving separated values
together, like merging per-color
buffers into pixels

The various possible output permutations of the input bytes from each of the Advanced
SIMD byte-shuffling instructions are listed in the following tables. Input #1 bytes are
indicated using hexadecimal (with lower case letters), while input #2 bytes are indicated
using alphabetic capital letters and are shaded gray. Note that TrN/UzP/z1P all behave
identically to each other when the inputs are each comprised of two 64-bit operands
and can be used interchangeably.

In many cases, algorithms require specific well-structured byte rearrangement. It may
be possible to achieve the desired rearrangement through a series of steps through
these dedicated shuffling instructions. Two or four neighboring elements may be moved
together by specifying a larger element size than the elements themselves. See the
Section 3.5.7.1, “Byte Shuffle Example: Transposing Matrices” for an example.

Copyright © 2024 Apple Inc. |
77

2024-03-21



Apple Silicon CPU Optimization Guide
ISA Optimization: Advanced SIMD and FP Unit Shuffle and Permute Instructions

Table 3.14. Input-Output Patterns for the Advanced SIMD Shuffling Operations:
Byte-Sized Elements

o op Vector Byte Lanes
%5(14 (13 (12|11 |10 | 9 | 8 |7 | 6 | 5|4 |3|2|1]|0
Input 1 f e|d|c|b|a|9|8|7|6|5|4]|3]|2]|1 0
Input2 (| P O | N | M| L | K]|J I H|G|F|E|D|C]|B]|A
EXT #1| A | f e|d|c|b|a|9]|8|7|6|5|4]|3]|2]|1
EXT #2| B | A f e | d c|b|la|9|8|7|6]|5|4]3]|2
EXT #3| C | B | A | f e|d|c|b|a|9]|8]|7 |6 |5|4)|3
EXT #4| D | C | B | A | f e|ld|c|b|a|9|8|7 6|54
EXT #5| E [ D | C | B | A | f e|d|c|b|a|9]|8|7|6]|5
EXT #6| F | E | D | C | B | A | f e|d|c|b|a|9]|8]|7]|6
EXT #7| G | F | E|D|C | B | A | f e|d|c|b|a]|9]|8]|7
EXT #8| H | G | F | E| D | C | B | A | f e|d|c|b|a]|9]8
EXT #9| | H|{G|F|E|D|C|B]|A]|f e|d|c|bj|a]|?9
2)1('(1)‘ J I H|G|F|E|D|C|B|A]|f e|d| c| b | a
i)l(f K| J I H|G|F|E|D|C|B|A]|f e|d|c|b
Byte (B) i)l(g L | K| J I H|G|F|E|D|C|B|A]|f e | d| c
i)l(g M| L|[K]/|[J I H|G|F|E|D|C|B|A|f e | d
;Eé:f)]iII‘ N M L K J | H G F E D C B A f e
z)f;‘ (0] N M L K J I H G F E D C B A f
REV16 | e f c|d|a|b|8|9]|6|7|4|5]|2]|3]0]|1
REV32 | c | d | e f 8|9 |a|lb|4]|5|6]|7]0]1 2 |3
REV64 | 8 | 9 | a | b | c | d]| e f 0|1 23| 4|5 ]|6]|7
TRN1 O|le|M|c|K]|a I 8| G|6|E|4]|C|2]|A]|O
TRN2 P|f|N|d|L|b|J|9|H|7]|F|5|D|3]|B]|1
UzP1 O | M| K | G|E|C| A | e c a 8|1 6| 4 2|0
UzZP2 P(N|L|J|H|F|D|B]|f d| b |97 |5]3]|1
ZIP1 H|7|G|6|F|5|E|4|D|3|C|2|B|1|A]|O
ZIP2 P|f|O|e|N|d|M|c|L|b|K|a]|J]|?9 I 8
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Table 3.15. Input-Output Patterns for the Advanced SIMD Shuffling Operations:
Half-Sized Elements

Vector Byte Lanes
15,14 13,12 11,10 9,8 7,6 5,4 3,2 1,0
Input 1 7 6 5 4 3
Input 2

Format Op

> | O

EXT #2
EXT #4
EXT #6
EXT #8

EXT
#10

EXT
#12

EXT
#14

REV32
REV64
TRN1

a|lhjlwW|IN]JT|~-

D
4
5
6
7

O|l0O|m|>]|T
O[T |>» | N]O
W > |(N|o]m
>|N|o|o]m
Mlw|Nv|=

m
O
@
w

A 7

»
(¢

_n
m
&)
(@
w
>
~
(0]

Half (H)

@
=
m
@)
O
w
>
~

TRN2

UzZPl
uzp2
ZIP1
ZIP2

AP WOWIN|I~|W®

RN

I O I|0|T|o(d|lo
N|w|mm{vy|lo|o|N
QO|lg|OoO|m|m|o|b>
oV B> |lo|ld[N|o
M| W[ N|Oo|O|O|o|N
m(>»| w|(v|m|>[(Nv|o
hMlo|[m|O|l-|O|lw]|-=-

Table 3.16. Input-Output Patterns for the Advanced SIMD Shuffling Operations:
Word-Sized Elements

Vector Byte Lanes
Format Op
15,14,13,12 11,10,9,8 76,54 3,21,0

Input 1 3 2 1 0
Input 2 D C B A
EXT #4 A 3 2 1
EXT #8 B A 3 2

EXT
#12 C B A 3

Word

(S) REV64 2 3 0 1
TRN1 C 2 A 0
TRN2 D 3 B 1
UzP1 C A 2 0
Uzp2 D B 3 1
ZIP1 B 1 A 0
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Table 3.16. Input-Output Patterns for the Advanced SIMD Shuffling Operations:
Word-Sized Elements

Shuffle and Permute Instructions

Vector Byte Lanes

Format Op
15,14,13,12 11,10,9,8 76,54 3,2,1,0

ZIP2 D 3 C 2

Table 3.17. Input-Output Patterns for the Advanced SIMD Shuffling Operations:
Double-Sized Elements

Vector Byte Lanes
Format Op
15,14,13,12,11,10,9,8 7,6,5,4,3,21,0
Input 1 1 0
Input 2 B A
EXT #8 A 1
Double | TRN1/
(D) | UZP1l/ A 0
ZIP1
TRN2/
uzp2/ B 1
ZIP2

The pup and 1INs instructions can be used to construct some patterns that cannot

be created with any of the other element shuffling instructions. While both select any
arbitrary element from the input vector, bup copies that element into all elements of
the output, whereas 1Ns inserts it into any arbitrary element of the output, leaving the
contents of the other elements alone. Note that this insertion property makes Ins a
destructive, read-modify-write operation.

Finally, as noted at the beginning of this section, TBL and TBX allow creation of any
arbitrary vector from 1-4 input vectors based on a byte selection vector. Because of
their flexibility, these instructions require considerable resources to execute. Use them
only when the other shuffle and permute instructions do not provide the necessary
patterns.

Recommendation: Explore the EXT, REV, TRN, UzP, and z1P Instructions to
Perform a Wide Variety of Shuffle and Permute Operations:

The EXT, REV, TRN, UZP, and zIP instructions perform a variety of shuffle and
permute operations that can be used alone or in combinations to create useful
patterns. Patterns may be available with clever application of the instructions
that might not be obvious and may require study of the tables.

[Magnitude: Medium | Applicability: Medium]

Byte Shuffle Example: Transposing Matrices

One of the more common byte-shuffling actions is transposition of matrices in memory.
The Advanced SIMD TRN instructions can be very helpful with this, but it is not always
obvious how to put them to optimal use. They allow one to read a square block of data
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from the original matrix, where the size of each block is the number of elements in an
Advanced SIMD vector, and transpose it in registers. This is most easily observed in a
transpose of a matrix of 64-bit operands, which works with 2x2 blocks:

// Loop down

input columns / across output rows

#define BLOCK_SIZE 2

for (k=0; k <

// Loop across input rows / down output columns
1 < INPUT COLUMNS; 1 += BLOCK SIZE) {

for (1=0;

// --
a0 =
al

// 2x
b0 =
bl =

!/l --
in t[
in t[

vtrnlg <suf>64(al0, al);
vtrn2qg <suf>64(al, al);

INPUT ROWS; k += BLOCK SIZE) {

Read block
in[k*BLOCK_SIZE+0][1*BLOCK SIZE];
in[k*BLOCK_SIZE+1][1*BLOCK SIZE];

2 block transpose (C intrinsics)

Write block out, transposed
1*BLOCK_SIZE+0][k*BLOCK SIZE] = bO0;
1*BLOCK_SIZE+1][k*BLOCK SIZE] bl;

// <suf> may be

'u' or 'f' or ...

Each block only requires 2 loads, 2 stores, and 2 TRN instructions, instead of 4 scalar
loads and 4 scalar stores. While this only has 25% fewer instructions/block, there are a
full 50% fewer load and store instructions. Because transposes are usually bottlenecked

on load and store bandwidth, this can result in a 2x speedup.

For 32-bit operands, a pair of word-sized TRN instructions alone will not completely
transpose a vector containing 4 word-sized values. Instead, 32-bit TRN instructions will
need to be mixed with 64-bit TRN instructions in a 2-pass sequence on a 4x4 block of

operands:

// Loop down
#define BLOCK
for (k=0; k <

// Loop across input rows / down output columns
1 < INPUT COLUMNS; 1 += BLOCK_SIZE) {

for (1=0;

// -
a0 =
al =
a2 =
a3 =

input columns / across output rows

_SIZE 4

INPUT ROWS; k += BLOCK_SIZE) {

Read block
in[k*BLOCK_SIZE+0][1*BLOCK SIZE];
in[k*BLOCK_SIZE+1][1*BLOCK SIZE];
in[k*BLOCK_ SIZE+2][1*BLOCK SIZE];
in[k*BLOCK_SIZE+3][1*BLOCK SIZE];

// 4x4 block transpose (C intrinsics)

/-
b0 =
bl
b2
b3

/-

Pass 1: 64b transpose
vtrnlg <suf>64(al, a2);
vtrnlg <suf>64(al, a3);
vtrn2qg <suf>64(al, a2);
vtrn2qg <suf>64(al, a3);

Pass 2: 32b transpose
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c0 = vtrnlg_<suf>32(b0, bl);

cl = vtrn2q_<suf>32(b0, bl);

c2 = vtrnlg_<suf>32(b2, b3);

c3 = vtrn2q_<suf>32(b2, b3);

// -- Write block out, transposed

in t[1*BLOCK SIZE+0][k*BLOCK SIZE] = cO0;

in t[1*BLOCK SIZE+1][k*BLOCK SIZE] = cl;

in t[1*BLOCK SIZE+2][k*BLOCK SIZE] = c2;

in t[1*BLOCK SIZE+3][k*BLOCK SIZE] = c3;

The first pass transposes entire 64-bit halves of the vector, while the second pass
transposes the 32-bit values within each of those halves. Note the ordering of TrRN1/
TRN2 instructions and mixture of inputs at each step. Naively, this transposition would
require 16 scalar loads and 16 scalar stores, but can be accomplished with 4 loads, 4
stores, and 8 TRN instructions. This TRN-based version requires 50% fewer instructions
and 75% fewer loads and stores.

This same pattern can be extended to transpose matrices of halfword-sized elements
using 8x8 blocks, or even matrices of byte-sized elements using 16x16 blocks. For
smaller element sizes, additional passes are required, moving from transposing entire
halves of each vector down to transposing individual elements: 8x8 uses 3 passes

of TRN instructions per block (64-bit / 32-bit / 16-bit), while 16x16 uses 4 passes of
TRN instructions (64-bit / 32-bit / 16-bit / 8-bit). Because each vector load and store
can handle so many elements at once for these small element sizes, the savings are
even more significant. For 16-bit elements, a block that takes 128 scalar load and
stores requires only 16 vector load and stores with 24 TrN instructions. While for 8-bit
elements, a block that originally required 512 scalar load and stores now requires only
32 vector load and stores with 64 TRN instructions. Needless to say, the performance
increase in these latter scenarios can be quite significant as the bottleneck shifts from
the load and store units to the vector units.

3.5.8 Brain Float Data Type (sricat16) Operations

The FEAT BF16 feature parameter indicates that the processor supports both the
BFloat16 data type and a limited selection of related instructions:

* Multiply-Accumulate and Lengthen: BrMLALB, BFMLALT (by element and by vector)
* Dot Product: BrDoT (by element and by vector)

* Matrix Multiply: BFMMLA

* Conversion: BVCVT, BFCVTN, BFCVTN2

These operations accumulate multiplications of BFloat16 inputs, in a variety of patterns,
into Float32 destinations. The BFMLAL operations use the bottom/top input pattern (see
Section 3.3.20, "Bottom or Top Half of Element Pairs: B/ T"). BFDOT and BFMMLA use
other specific patterns custom to their operation.

The arithmetic operations are similar to their counterparts. See Section 3.5.6,
“"Dot Product and Matrix Multiply Instructions”, Section 3.5.4, “Fused Op with Add/
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Accumulate Instructions (Integer and ASIMD&FP Types)”, and the Arm Architecture
Reference Manual for more information.

This small selection of instructions covers the majority of algorithms targeted by
BFloat16. To perform other operations, convert the values to conventional Float32
values, do any necessary arithmetic with that higher-precision data type, and then
convert back to BFloat16 before writing the values to memory. Note that there is
no explicit BFloat16-t0-Float32 conversion instruction. Instead, use the following
sequence:

SHLL vdl.4S, Vvn.8H, #16 ; vector BFloatl6-to-Float32, lower half
SHLL2 vd2.4S, Vvn.8H, #16 ; vector BFloatl6-to-Float32, upper half

Because the upper 16 bits of both types are identical (sign, exponent, and upper bits

of mantissa), these shifts will always result in an equivalent Float32 with its low 16
mantissa bits equal to zero. Of course, since all of the math operations noted above also
perform implicit lengthening to Float32, it is usually best to just perform lengthening
using those operations.

There are, however, explicit instructions for conversion back to BFloat16:

BFCVTN Vd.4H, Vnl.4S ; vector Float32-to-BFloatl6, lower half
BFCVTN2 Vd.8H, Vn2.4S ; vector Float32-to-BFloatl6, upper half

Use these dedicated instructions instead of an sHRN because they will apply the proper
floating-point rounding of the mantissa during the conversion. These instructions also
have a scalar form (BFCVT Hd, Sn).

Int8 Matrix Multiplication and Additional Dot Product
Operations

The rEAT 18MM feature parameter indicates the availability of the 8-bit integer
matrix multiply-accumulate instructions and some additional mixed sign dot product
instructions.

* Matrix Multiply-Accumulate: sMMLA, UMMLA, USMMLA (by vector)

* Dot Product: supoT (by element), uspoT (by element and by vector)

Advanced SIMD Coding Examples

To illustrate how to use intrinsics, several examples are included in this section.
However, these algorithms are common and some of them are already available in the
Accelerate.framework in a highly optimized form. Use the framework capabilities when
available instead of writing custom code. In order to focus on the core transformations,
these examples have not been maximally optimized and do not handle many critical
corner or edge cases. Still, they can provide an example of how Advanced SIMD code
should be used to accelerate mathematically intense software.

Note that some of the inner “loops” in these examples must be unrolled in any source
code, as they use intrinsics that require compile-time constant-value lane or byte
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specifiers. These loops, which are indicated with comments, are nevertheless written
as such to avoid repetition of code that only differs by a single constant value per line.

Matrix Operations

Advanced SIMD is often used to accelerate dense matrix computations. The structure
and regularity of these algorithms makes them well suited for the parallel operations
offered by the Advanced SIMD instructions. Nevertheless, there are a number of subtle
details about Advanced SIMD functionality that can be learned by looking at these
examples. The remainder of this section discusses how 32-bit floating point matrix-
matrix and matrix-vector multiplies can be constructed.

Matrix-Matrix Multiply

Dense matrix-matrix multiplies are commonly performed using vector instructions. The
following block of code shows how a simple matrix-matrix multiply can be performed
with MxP X PxN = MxN row-major matrices:

// Simple macros to read/write vectors from/to scalar arrays

#define LD F32V(float32Ref)  (*((float32x4 t *)(&(float32Ref))))
#define ST F32V(float32Ref)  (*((float32x4 t *)(&(float32Ref))))
#define VEC_SIZE_F32V 4

int i, j, k; // Induction variables

float32x4 t a, c; // Temporaries

float32_t *A; // MxP source matrix #1

float32_t *B; // PxN source matrix #2

float32_t *C; // MxN destination matrix

float32x4_t zeroVec = vmovq n_ £32(0.0);

// Loop over columns of destination matrix C (rows of A)
for (i=0; i < M; i++) {
// Loop across rows of destination matrix C (columns of B)
// -- Calculate VEC_SIZE F32V columns at once
for (j=0; j < N; j+=VEC_SIZE F32V) {
// Loop over the "inner" P cols/rows of A/B matrices
c = zeroVec;
for (k=0; k < P; k+=VEC_SIZE F32V) {
// Read a vector full of A elements
a = LD _F32V(A[i*P + k]);
// Use multiply-by-element to scan down the "a" vector

// -- First column of A (element #0) x first row of B
c = vimaq laneq f32(c, LD F32V(B[(k+0)*N + j]), a, 0);
// -- Second column of A (element #1) x second row of B
c = vimaq laneq f32(c, LD F32V(B[(k+1)*N + j]), a, 1);
// -- Third column of A (element #2) x third row of B
c = vimaqg laneq f32(c, LD F32V(B[(k+2)*N + j]), a, 2);
// -- Fourth column of A (element #3) x fourth row of B
c = vimaqg laneq f32(c, LD F32V(B[(k+3)*N + j]), a, 3);
}
ST F32V(C[i*N + j]) = c;

The resulting assembly code from Clang intermingles the intrinsic instructions (5 LDR
and 4 FMLA) with loop control and pointer management C code. Only the innermost loop
is shown. For instance, the compiler simplifies the "B[ (k+{0..3)*N + j]"indices in the
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LD_F32v macro to be a common base register x6 that increases once per loop iteration
with offsets in x16, x17, and x19 that account for scaling of k by N and element size.

.LBBO_9: // Parent Loop BBO_3 Depth=1
LDR ql, [x5], #16
LDR g2, [x6]
LDR g3, [x6, x17]
LDR g4, [x6, x16]
LDR a5, [x6, x19]
FMLA v0.4s, v2.4s, vl.s[0]
FMLA v0.4s, v3.4s, vl.s[1]
ADD x4, x4, #4 // =4
FMLA v0.4s, vd.4s, vl.s[2]
CMP x4, x11
FMLA v0.4s, v5.4s, vl.s[3]
ADD x6, x6, x15
B.LT .LBBO_9
B .LBBO_6

Although this implementation is simplified, it demonstrates a few key common practices.
The routine uses a fixed accumulator, ¢, and accumulates a vector’s worth of outputs

in parallel into that accumulator before storing its results. While the code reads entire
vectors at a time from the B matrix, the overall access pattern is down columns,

which requires long strides. Meanwhile, the a array is read along rows, but instead

of using the entire vectors of data at once, the algorithm uses the “lane” variants of

the vEmagq intrinsics to pick out individual elements from each vector. This choice of
operation arranges elements in such a way that the operation may be performed without
transposing one of the input matrices to column-major form. Nevertheless, that form
may still be advantageous for performance in some cases.

Matrix-Vector Multiply

Matrix-vector operations are often needed along with matrix-matrix operations. In the
case of a vector-matrix multiply, with 1xP X PxN = 1xN (1-row) vector operation, the
matrix-matrix code described previously can be used with M=1, so only a single pass
through the outer loop occurs. However, for the more common matrix-vector multiply,
with MxP X Px1 = Mx1 (1-column) vector operation, the B matrix access pattern used
previously does not lend itself well to vector access. As a result, the loop must be
modified as shown below (the introductory code is identical to the previous example):

// Loop down column of destination matrix C (also rows of A)
for (i=0; i < M; i++) {
// Scan through the B vector, VEC_SIZE elements at once
c = zeroVec;
for (k=0; k < P; k+=VEC_SIZE F32V) {
c = vimaq f32(c, LD F32V(B[k]), LD F32V(A[i*P + k]));
}
// Final reduction to a scalar, across lanes
C[i] = vgetq lane f32(vpaddq f32(vpaddq f32(c,zeroVec),zeroVec),0);

Instead of calculating a vector’s worth of outputs in parallel, this only calculates a single
scalar output value at a time. However, all of the vector lanes are used in parallel to
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perform computations, so only one fourth as many multiply-accumulate instructions
are required when compared with the scalar version. At the end, a “tree"” of paired
adds accumulates the results down to a single scalar (see Section 3.5.3, “Horizontal
Arithmetic and Test Instructions”).

Matrix Operation Improvements

The previously described simple routines produce the correct results and serve to
demonstrate the core algorithms. For small input matrices that fit into the L1 data
cache, they are sufficient. However, using these simple algorithms on larger matrices
will encounter significant bottlenecks. As a result, real world implementations tend to
have a few enhancements:

* Loop Ordering: The matrix-matrix example has loops arranged so that accesses
to the A matrix are primarily in a row-major manner while accesses to the B matrix
occurs in a largely column-major direction. The loops can be rearranged to swap
these access patterns. The resulting patterns may be better for some matrix sizes
and/or cache configurations.

* Blocking: The matrix-matrix example code will read the entire B matrix over the
course of computing each row of the C matrix, using each data value only once during
each pass through the matrix. As a result, the matrix will tend to stream through
and experience constant cache misses for larger matrix sizes. Thus often the most
important enhancement is to perform the multiply in a blocked manner, with an extra
pair of outer loops that localize accesses to a subset of the rows/columns of the
input matrices at a time. The selected rows/columns can then be cached and used
repeatedly before moving to the next block. This process works the same way with
vectors as it does with standard scalar operations.

* Prefetching: The hardware prefetcher works well with the access patterns running
down contiguous rows in the A and C matrices (and B as well, in the matrix-
vector case), but the large strides needed to access the B matrix down columns
in the matrix-matrix case may not be identified as a single, regular pattern. As
a result, software prefetching may help (see Section 4.6.12.2, “Software Prefetch
Instructions”). Note though that the prefetch stream must run sufficiently far ahead of
the access stream to hide the latency, and that tuning will likely be required. If done
well, software prefetches can virtually eliminate access-time cache misses.

* Column Grouping: Another problem with access to the B matrix is that reading a
single vector’s width of 4 columns at a time only uses a fraction of each cache line
that is read into the L1 data cache. As a result, significant speedup can be gained
simply by grouping larger numbers of columns together and computing 16-32 results
(or more) in parallel instead of just 4. This will allow each cache line of B to be used in
its entirety.

* Transpose Caching: With a blocked matrix multiply, B matrix access can be
optimized further. Software can load the active block of the B matrix into a buffer,
sized to fit into the L1 data cache, in the order that it will need to be read. The
resulting buffer contents are not a simple scalar transpose, but a combination of the
original order within each vector and the transpose between vectors. This buffer can
then be re-read repeatedly, with few cache misses. This technique is only useful with
very large matrix-matrix multiplies, since the buffer must be reused enough times to
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amortize the cost of filling it in the transport order in the first place, but it can be quite
helpful for very large matrices.

With such enhancements, even relatively simple implementations can achieve good
performance, especially with careful loop unrolling to maximize the utilization of vector
registers.

Image Filtering

Filtering techniques are used regularly in the field of image processing. Many of these
filters are two-dimensional versions of FIR filters, modifying values of pixels based on
their current value and those of their nearest neighbors. This section illustrates a few
ways that such filters can be constructed, and provides additional examples on how the
ISA can be utilized through intrinsic functions.

These filters operate on a grayscale buffer, which consists of 8-bit integer values
(0-255) for each pixel. The concepts illustrated here can be applied to color images,
too. Those images contain multiple color channels (RGB or RGBa), each of which

is equivalent to a grayscale channel. They can be filtered using grayscale code by
de-interleaving the combined buffer into separate R/G/B/a buffers, filtering the buffers
separately, and then re-interleaving them afterwards. Another technique to handle color
is to leave the buffers interleaved and process all of the colors in each pixel at the same
time in different parallel vector lanes. Both approaches are viable; the parallel-colors
technique is usually easiest if the same operation is always being applied to all colors,
or if the colors within each pixel can interact. In contrast, the de-interleave/compute/
re-interleave technique is usually best when different colors require different code
sequences, such as for the alpha channel in RGBa images. Using 1.D3/ST3 or L.D4/ST4
instructions to perform the de-interleaving/re-interleaving as a part of the load/store
process is recommended in this scenario. See Section 3.4.4.9, “Load/Store Operations”.

Window Filtering

Moving across each row of an image, software can calculate the final value for entire
vectors of pixels at once. A similar “moving window" scheme is used to select groups of
pixels from the area around the output vector to use as inputs while the algorithm scans
down each row. Because an image is two-dimensional, the algorithms reads input from
several rows at once. The basic idea is illustrated in Figure 3.7: “Advanced SIMD Pixel
Filter".
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Figure 3.7. Advanced SIMD Pixel Filter
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To compute N output pixels in parallel, each filter mask element is multiplied by the pixel from the same
coordinate of N moving windows at once (N=4, in this case).

The following code processes a figure of COLs x ROWS, using a filter with a radius of EDGE
pixels around each target pixel. This simple version can only handle cases with EDGE
values up to 3, which results in a 7x7 filter around each pixel, maximum.

// Simple macro to access a scalar uint8_ t array as vectors, instead

#define LD_U8V(uint8Ref) (*((uint8x16_t *)(&(uint8Ref))))

#define ST U8V (uint8Ref) (*((uint8x16_t *)(&(uint8Ref))))

#define VEC_SIZE U8V 16

#define MASKSIZE (2*EDGE+1)

#define SCALEDN_ PIXEL 8 // need to cancel out gain from filter weights

int i, j, k, v;

// Image buffers for input and output

uint8_t *imageIn, *imageOut;

// Filter weights, in vector/row (vector length limits MASKSIZE to 8)
int16x8_ t filters[MASKSIZE];

int32x4_t zeroVec = vmovqg_n_s32(0);

// Temporary buffers

uint8x16_t inBlock, input, nextInputs[MASKSIZE];
int16x8_t inWindow, filter;

int32x4_t acc0, accl, acc2, acc3;

// Loop through rows of image
for (i=EDGE; i < ROWS - EDGE; i++) {

// Load in initial block of 16 inputs for this row
for (v = 0; v < MASKSIZE; v++) {

nextInputs[v] = LD U8V(imageIn[ (i+v-EDGE)*COLS]);
}

// Loop over columns, stepping by vectors
for (j=EDGE; j < COLS - EDGE; j+=VEC_SIZE_U8V) {

// Clear accumulators for next block of pixels
acc0 = accl = acc2 = acc3 = zeroVec;

// Loop over rows of filter window
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for (k = 0; k < MASKSIZE; k++) {

// Load in next block of inputs

input = nextInputs[k];

nextInputs[k] = LD U8V(imageIn[ (i+k-EDGE)*COLS +
(j-EDGE+VEC_SIZE U8V)]);

filter = filters[k];

// Loop over columns of filter window

// -- NOTE: MUST be unrolled to support vextqg & vmlal!

for (v = 0; v < MASKSIZE; v++) {
// Align and zero-extend 16 columns of input
inBlock = vextqg u8(input,nextInputs([k], V);
// -- Accumulate 1 weight for left half of vector
inWindow = (intl16x8 t)vmovl u8(vget_ low_u8(inBlock));
accO0 = vmlal_ laneq_slé6(accO,

vget low_sl6(inWindow), filter, v);
accl = vmlal high laneq sl6(accl,inWindow,filter,v);
// -- Accumulate 1 weight for right half of vector
inWindow = (intl16x8 t) wvmovl high u8(inBlock);
acc2 = vmlal_laneq_slé6(accO,
vget low_sl6(inWindow), filter, v);

acc3 = vmlal _high laneq sl6(accl,inWindow,filter,v);

}
}
// Pack 4 _s32 accumulators back into one _u8 vector for output
// -- Scale down during 32b->16b conversion,
// then just narrow & remove sign during 16b->8b
ST UBV(imageOut[i*COLS + j]) =
vgmovun_high s16/( // 4. #2-3 -> u8
vgmovun_s16 ( // 3. #0-1 -> u8
vgrshrn_high n_s32( // 2a. #1 -> slé6

vgrshrn n_s32(acc0, SCALEDN PIXEL), // la. #0 -> slé6
accl,SCALEDN PIXEL)),

vgrshrn_high n_s32( // 2b. #3 -> sl6

vgrshrn n_s32(acc2, SCALEDN PIXEL), // lb. #2 -> sl6
acc3,SCALEDN_ PIXEL));

This code leverages 32-bit accumulators, 4 times the size of the 8-bit input elements,
to provide extended range for the integer multiplications. However, since it is an image
filter it must scan over pixels in both X and Y directions. While some FIR audio filters
tend to have hundreds of taps down a single dimension, the MASksIZE of image filters
tends to be much smaller. Nevertheless, there are still a significant number of taps,
MASKSIZE? taps total. This simple implementation allows for mask sizes up to 7x7.
However, this limit is only caused by the limited length of the filter weights for each

row (single int16x8_t vectors) and the finite size of the input buffer (just 2 uint8x16 t
vectors).

One issue that needs to be considered with these filters is the number of variables
that need to be register allocated. This example is small enough that all live variables,
including the entire filters and nextInputs arrays, can be register-allocated, so the
only memory references that need to be made are the L.bs and sTs noted in the code.
However, if the MASKSIZE were to get much larger then these arrays might start to

spill out of registers. When that occurs, the compiler will need to insert additional
loads and stores to re-load values from these arrays, which may cause performance to
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drop off noticeably. See Section 3.5.1, “Manage Architectural Register Limits"” for more
commentary on this effect.

Per-Pixel Filtering

An alternate strategy for performing the same filter is to calculate a single output pixel
at a time. In this scheme, the code uses parallel vector lanes to calculate an entire row's
worth of filter taps for one output pixel at once, instead of calculating the same tap
across an entire vector of separate outputs at once. The difference between this and
the previous filters is quite analogous to the difference between the matrix-matrix and
matrix-vector computations discussed previously in Section 3.6.1, “Matrix Operations”.

int32x2_t s32Extension = vmov_n s32(0);
intl6x4_t sl6Extension = vmov_n sl6(0);

// Temporary buffers

uint8x16_t inputs[MASKSIZE], nextInputs[MASKSIZE];
int16x8_t inWindow, filter;

int32x4_t acc;

// Loop through rows of image
for (i=EDGE; i < ROWS - EDGE; i++) {

// Load in initial block of inputs (sufficient for 16-wide filter)
for (v = 0; v < MASKSIZE; v++) {

nextInputs[v] = LD U8V(imageIn[ (i+v-EDGE)*COLS]);
}

// Loop over columns, stepping by vectors
for (j=EDGE; j < COLS - EDGE; j+=VEC_SIZE_U8V) {

for (k = 0; k < MASKSIZE; k++) {
// Load in next block of inputs (will overrun a bit)
inputs[k] = nextInputs[k];
nextInputs[k] = LD U8V(imageIn[ (i+k-EDGE)*COLS +
(j-EDGE+VEC_SIZE U8V)]);
}

// Process a vector-size block of output pixels, one per iter.
// -- NOTE: MUST be unrolled for vextq u8!
for (v=0; v < VEC_SIZE U8V; v++) {
// Clear vector of accumulators for one pixel
acc = zeroVec;
// Loop over rows of filter window
for (k = 0; k < MASKSIZE; k++) {
filter = filters[k];
// Align and O-extend 8 columns (for MASKSIZE of <=8)
inWindow = (intl16x8_t) vmovl u8(vget low u8(
vextq_u8(inputs[k],nextInputs[k],v)));
// Calculate cols -EDGE to -EDGE+3
acc = vmlal slé6(acc, vget low_sl6(filter),
vget low_sl6(inWindow));
// Calculate cols -EDGE+4 to -EDGE+7
acc = vmlal high slé6(acc, filter, inWindow);

}
// Reduce, narrow, and store out individual pixels
imageOut[i*COLS + (j+v)] = vget lane u$8( // 3. Store pixel

vgmovun_sl6(vcombine sl6(vgrshrn n s32( // 2. Narrow

Copyright © 2024 Apple Inc. | 2024-03-21
90



Apple Silicon CPU Optimization Guide

ISA Optimization: Advanced SIMD and FP Unit Image Filtering
vcombine_s32(vcreate_s32(
vaddvq_s32(acc)),s32Extension), // 1. Horiz +
SCALEDN_PIXEL),sl6Extension)), 0); // Constants

3.6.2.3

This code is somewhat less efficient than the parallel-pixel filtering, for a few reasons:

* With MASKSIZE = 7, only 7 of 8 parallel lanes will be in use in each row, wasting 12.5%
of each vector. While reasonable with this configuration, smaller values of MASKSIZE
will result in lower efficiency: 37.5% waste with MASKS1ZE=5, and 62.5% waste with
MASKSIZE=3. Hence, use this strategy when the MASKSIZE is almost equal to a vector
size. Note that the waste will become less signficant for very large MASKSIZE values.

* Since all of the filter weights and input buffers must be held in registers, running out
of registers is more likely. (MASKSIZE=7 is about the limit of what might be register-
allocatable.) Alternately, if these are not register-allocated, then there will be more
pressure on the load/store unit because the filter weights need to be re-loaded into
registers for every input pixel instead of being shared across a vector’s worth of
outputs.

* Instructions are needed at the end to perform all of the horizontal adds needed to
complete processing of each pixel. Afterwards, a store is required for each output,
instead of only one store for every vector’'s worth of outputs.

Because of these reasons, parallel-output filtering is often preferable, but per-output
filtering may be better in some cases. For example, it is easier to use near the edges of
images, where there are not enough pixels available to compute an entire vector's worth
of output at once.

Per-Pixel Filtering Using DOT Instructions

The spoT and uDpoT instructions described in Section 3.5.6, "Dot Product and Matrix
Multiply Instructions” allow optimized dot product-and-summation operations of all the
pixels in every 32-bit lane of an output vector at once. Because of the design of these
instructions, they are more easily applicable to per-pixel filter implementations than
parallel-pixel implementations. In fact, only the inner loop of the previous example needs
to be replaced:

(previous identical)
// Loop over rows of filter window
for (k = 0; k < MASKSIZE; k++) {
// Process an entire l6-pixel-wide mask at once
sumVector = vdotqg u32(sumVector, filters[k],
vextq u8(inputs[k],nextInputs[k],Vv));

(rest identical)

This replaces four vector operations (EXT, sHLL, and two MLALs) with just two (ExT and
upoT), doubling the maximum possible performance. (Doubling is possible if inputs and
filter weights are register-allocated. Otherwise, the load/store unit is likely to become
the critical bottleneck first.) The only disadvantage of this routine is that the upoT
instruction only allows unsigned filter weights, so filters like edge detection that rely
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upon signed weights will not work. However, the uspoT and subpot instructions added
with FEAT 18MM eliminate this restriction, allowing unsigned pixels to be used with
signed weights, for code that will only need to run on more recent chips.
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Chapter 4. Core Microarchitecture
Optimization

4.1

The details covered in Chapter 4, Core Microarchitecture Optimization and Appendix A,
Instruction Latency and Bandwidth represent the most important information to
consider when optimizing software for the microarchitecture. The CPUs employ
additional techniques to improve performance beyond what is described here. These
may change from generation to generation, and it may be difficult or counter-productive
to try to transform software to match the heuristics. The guidelines in this chapter
represent the optimization opportunities with the most significant impact across P cores
and E cores, and across CPU series and generations.

Apple Silicon CPU and Chip Overview

Apple silicon M Series and recent A Series chips feature two types of general purpose
CPU cores, performance cores (P cores) and efficiency cores (E cores):

* P cores: Designed to achieve maximum performance. They are aggressive, out-of-
order, superscalar, pipelined microprocessors that feature advanced forms of dynamic
branch prediction, register renaming, out-of-order speculative execution, memory
dependence prediction, and many other state-of-the-art features.

* E cores: Designed to achieve maximum efficiency, thus saving power and increasing
battery life while reducing heat generation and fan noise (where applicable). They are
based on a similar microarchitecture to the P cores, and still provide compelling high
performance. E cores are the most efficient place to run lighter-weight and everyday
tasks, allowing the performance cores to be used for the most demanding workflows.
Use the E cores to meaningfully increase throughput in heavily threaded applications.

Microarchitectural recommendations broadly apply to both core types, but with a focus
on the P cores. In some cases, a recommendation may apply to only one CPU core type,
but it will not adversely affect performance of the other type.

On Apple silicon, the system decides whether to schedule work on the P cores or

E cores based on many factors. The system does not offer any direct controls to
software or to end users regarding task placement. However, software can provide hints
to the system about where to schedule tasks via the Quality of Service controls. See
Section 5.1, “Prioritizing Work".

Several cores of the same type are grouped together and share a second level cache
and are collectively known as a cluster.

The overall parametrized topology is shown in Figure 4.1: “General Purpose Compute
Complex and Related Components”. For instance, the M1 chip consists of two clusters.
The first cluster contains 4 P cores that share a second level cache. The second cluster
contains 4 E cores that share their own second level cache. Both clusters are connected
to each other and to other system components via the fabric. Also connected to the
fabric is a high performance memory controller featuring a memory cache. Many other
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components including GPU and neural engine (not shown) are also connected to the
fabric. Other chips contain similar topologies, but the number of cores per cluster and
the number of clusters may vary, as shown in Table 4.1. In Ultra chips, the two dies are
connected via low-latency high-bandwidth Ultra Fusion interconnect.

Figure 4.1. General Purpose Compute Complex and Related Components
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Table 4.1. Apple silicon Topology Configurations
Chip Cores per P| Number of |Cores per E| Number of Shorthand
Cluster P Clusters Cluster E Clusters NumbDie x (Cluster + ... + Cluster)
M1 4 1 4 1 1x (4P + 4E)
M1 Pro 3or4 2 1 1x (3P + 3P + 2E)
1x (4P + 4P + 2E)
M1 Max 4 2 2 1 1x (4P + 4P + 2E)
M1 Ultra 4 4 2 2 2 X (4P + 4P + 2E)
M2 4 1 4 1 1x (4P + 4E)
M2 Pro 3or4 2 4 1 1x (3P + 3P + 4E)
1x (4P + 4P + 4E)
M2 Max 4 2 4 1 1x (4P + 4P + 4E)
M2 Ultra 4 4 4 2 2 x (4P + 4P + 4E)
M3 4 1 4 1 1x (4P + 4E)
M3 Pro 5o0r6 1 6 1 1x (5P + 6E)
1x (6P + 6E)
M3 Max 5or6 2 4 1 1x (5P + 5P + 4E)
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Microarchitectural Characteristics

Table 4.1. Apple silicon Topology Configurations (cont.)

Shorthand
NumbDie x (Cluster + ... + Cluster)

Chip Cores per P| Number of |Cores per E| Number of
Cluster | PClusters | Cluster | E Clusters

1x (6P + 6P + 4E)

A14 Bionic 1 4 1 1x (2P + 4E)
A15 Bionic 1 4 1 1x (2P + 4E)
A16 Bionic 1 4 1 1x (2P + 4E)

Note: Core and cluster topology specifications are provided for reference.
Software should check the appropriate sysctl parameter to dynamically adjust
to chip configuration. See Appendix B, Dynamic Determination of Chip-Specific
Capabilities for more information.

Microarchitectural Characteristics

The cores share fundamental microarchitectural characteristics with other modern
processors. The P cores in particular are multi-GHz, pipelined, superscalar, out-of-
order, speculative microprocessors with deep instruction windows. Thus many common
strategies used for improving performance are applicable to these CPUs.

However, there are a number of differences to be aware of when optimizing for
performance, including:

* Asymmetric multiprocessing: Apple silicon chips feature two different classes of
general purpose computing cores, one targeting high performance and one targeting
efficiency. The ISA is identical between the two core types. However, because threads
may run slower when assigned to the efficiency cores, multithreaded software should
be constructed with this in mind.

* Single threaded cores: Each core executes only one thread at a time, allowing the
full resources of the core to be applied to the executing thread. A core's caches and
TLBs are not shared with any other simultaneously executing thread.

* Cache hierarchy: The cores in each cluster contain their own private L1 instruction
and data caches, and share a common L2 shared cache with other cores in the same
cluster. The memory system maintains a Memory Cache in the memory controller
shared by many agents across the chip. Some algorithms will benefit from blocking to
the specific L1D and L2 cache sizes. The cores also apply non-temporal memory hints
in a way that best fits this particular cache hierarchy, which may require additional
tuning.

* Instruction latency and bandwidth: The latency and bandwidth characteristics of
cores differ from other processors. High performance algorithms developed for other
processors may need to be retuned using alternate sequences of instructions to best
match the available instruction execution characteristics.

* Preferred instructions: The cores optimize performance of specific instructions and
operands used for specific tasks. These instructions include those used for moving
(copying) registers and zeroing registers (sometimes referred to as idioms).

* Store-to-Load data dependencies: The cores optimize the performance of store-
to-load data flow through data forwarding and prediction algorithms that may require
different tuning.
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* Hardware prefetcher: Common straightforward access patterns will be prefetched
without issue, however applications may need to be tuned differently in the presence
of more unusual patterns.

Processor Pipeline Fundamentals

The P cores are multi-GHz, pipelined, out-of-order, speculative, superscalar
microprocessors with deep instruction windows.

* Multi-GHz, pipelined: Processing of an individual instruction requires, at a minimum,
several nanoseconds to complete. This includes fetching the instruction from memory,
decoding the operation, fetching any required input data, and performing the
operations. To improve throughput, the processor breaks the full lifetime into steps,
and uses specialized hardware to perform each step.

When an instruction completes a step, it moves to the next piece of specialized
hardware to complete the next step. Simultaneously, the next instruction executing

in a prior pipeline step can now move into the vacated specialized hardware. The
time allotted for completion of each step is a clock cycle. The processor can vary the
frequency, in clock cycles per second, from 100s of MHz to a few GHz, depending on
need. Faster clock cycles often result in higher performance, but also consume more
power.

* Out-of-order execution with deep instruction window: Short sequences of
instructions often consist of chains of instructions that the processor must execute
serially. For example, to increment a value in memory: a load instruction reads a value
from memory and feeds that into an add instruction, the result of which is written
to memory via a store instruction. These serial sequences prevent processors from
utilizing all of the hardware simultaneously: the load must complete, then the add, and
then the store. For this sequence, when the processor is executing the add, there are
no other instructions to keep the load and store hardware busy.

Therefore, the processor keeps a large buffer of upcoming instructions. Instructions
are read from memory and inserted into the buffer "in-order" to ensure inter-
instruction dependences are properly understood. From that buffer, the processor
attempts to find independent instructions (those whose inputs are available) that it
can execute out-of-order and simultaneously with other instructions. The instruction
window is how far ahead the processor will look for independent work. The P cores are
capable of looking ahead up to several hundred instructions.

The out-of-order mechanism stashes results of completed work and only commits
those results to registers and memory when they become the oldest in the instruction
window. This is known as "in-order" retirement. The retirement process ensures that
instructions appear to have executed in the proper sequential order, the order in
which a simple single instruction processor would execute them. Put another way, if
execution stops after a particular instruction, all instructions older than the stopping
point will have completed execution and will have had their results reflected in register
and memory state, while no younger results will have affected register and memory
state.

* Speculative: In order to keep the instruction window as full as possible, the
processor routinely makes predictions regarding control flow branches. The processor
fetches instructions following the predicted paths, and feeds those instructions into
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the instruction window. When the branches actually execute, the predicted direction
or target is compared against the result. Occasionally the actual result of the branch
will not match the prediction, and a misprediction occurs. Thus, the instructions in the
instruction window that are younger than the branch are not the proper instructions.
At this point, the processor flushes the younger instructions from the instruction
window, and new instructions are fetched from memory at the target of the branch.

Similarly, the processor may speculate past memory dependences. That is, the
processor may guess which, if any, older stores in the instruction window may write
values to memory that need to be read by younger loads in the window. In cases
where it guesses wrong and misses a dependence, the load will have read incorrect
data and potentially fed that to subsequent younger instructions. In such cases, the
processor must flush those instructions and re-execute them.

* Superscalar: To further increase throughput, the processor employs duplicated, or
parallel, specialized hardware components to operate on more than one instruction
per cycle. For example, the M1 P cores are capable of decoding 8 instructions each
clock cycle, and performing 6 integer add operations per cycle (plus SIMD and
memory operations as well).

At the highest level, the processor consists of two main components, Instruction
Delivery and Instruction Processing. Instruction Delivery fetches and decodes
instructions while Instruction Processing manages the instruction window and executes
the instructions. Instruction Delivery predicts branches and fetches instructions as fast
as possible to keep the instruction window in Instruction Processing as full as possible.
Instruction Processing searches through all of the instructions in the window identifying
and executing independent work, while retiring the oldest instructions. The Cluster
Interface Unit is outside of the core boundary and serves both Instruction Delivery and
Instruction Processing.

Instruction Delivery and Instruction Processing each consist of several units and connect
to the Cluster Interface Unit.
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Figure 4.2. Abstract View of the Processor Pipeline.
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Conceptually, the processor operates on ISA instructions, as previously described.

More technically, however, the processor decodes (translates) ISA instruction bytes into
executable units called microoperations (uops). These pops are highly tailored to the
microarchitecture. Most instructions are translated into a single pop, but some complex
instructions require multiple pops. In many cases, the distinction is not particularly
important, but the term "instruction" will be used when specifying a particular instruction
at the source code level and "uop" when referring to specific hardware.

Instruction Delivery consists of

* Instruction Fetch Unit (Fetch): Reads instruction bytes from the memory system
based on various prediction mechanisms. Contains the Instruction Translation
Lookaside Buffer (L1l TLB), which supports virtual memory by obtaining physical
addresses from virtual addresses. Contains the L1 Instruction Cache to improve
performance of reads of instruction bytes from memory.

* Instruction Decode Unit (Decode): Translates instructions bytes into executable
microoperations (Lops).

Instruction Processing consists of

* Map and Dispatch Unit (Map): Inserts new pops into the instruction window. It
obtains the necessary resources from the Execution and Retirement portions of the
processor to implement out-of-order execution of the pops.

* Schedule Unit (Schedule): Selects ready pops and issues them to the appropriate
execution units.
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Integer Execution Units (Int Execution): Sometimes referred as the General
Purpose Execution Units. Performs the desired operation on data associated with the
General Purpose Registers.

Advanced SIMD and FP Execution Units (ASIMD&FP Execution): Performs the
desired operation on data associated with the Advanced SIMD and FP (Vector)
Registers.

Load and Store Execution Units (Load&Store Execution): Reads data from and
writes data to the memory system. Contains the Data Translation Lookaside Buffer
(L1D TLB) to obtain physical addresses from virtual addresses to support virtual
memory. Contains the L1 Data Cache to improve performance of reads and writes
data bytes from and to memory.

Memory Management Unit (MMU): Performs page table walks and caches the
virtual to physical address translations in the L2 TLB.

Retirement Unit (Retire): Collects completed pops and commits the oldest results to
registers and memory to ensure the appearance of sequential execution.

The Cluster Interface Unit consists of

Shared L2 Cache: Caches bytes from the memory system to improve performance of
Instruction Fetch and Load and Store Execution Units. It is shared with other cores in
the cluster.

Fabric Interface: Moves cachelines to and from the fabric. The fabric transports
cachelines between other clusters, memory, and other devices and chip resources.

This guide uses the following additional microarchitectural definitions:

Dispatch: Send pops from the Map and Dispatch Unit to the Schedule Unit.
Issue: Send pops from the Schedule Unit to an Execution Unit.

Slot: A parallel lane in which a pop travels, usually in in-order portions of the
processor.

Demand: A required access to a cache structure (including TLB) according to the
predicted flow of instructions, as opposed to a prefetch access that is an educated
guess of future need.

Unique Miss: The initial miss in a caching structure (including TLB) that initiates a

fill. Subsequent misses while the fill is in progress are not unique. There may be many
unique misses for a particular cache line over the course of execution because the line
may be evicted from the cache and need to be re-filled later.

Datapath Bypassing/Forwarding Paths: Data buses that feed the result of an
operation from the output of an execution unit into the input of another execution
unit to eliminate the latency of a write and subsequent read of the register file.

Instruction Delivery Optimization

The following sections describe optimization opportunities for identifying and improving
Fetch and Decode Unit bottlenecks in Instruction Delivery.
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L1 Instruction (L11) TLB

The Instruction Translation Lookaside Buffer caches virtual-to-physical address
mappings. Application pages are 16KiB.

The L1I TLB is organized as follows. The L1D TLB and the L1l TLB are backed by a much
larger Shared L2 TLB as well as a Page Table Walker. See discussion in Section 4.6.2,
“L1 Data (L1D) TLB and Shared L2 TLB".

Table 4.2. L11 16KiB-Page TLB Organization

Chip Entries (Coverage)

Performance Cores Efficiency Cores
M1 Generation and A14 Bionic 192 entries (3MiB) 128 entries (2MiB)
M2 Generation and A15 Bionic 192 entries (3MiB)
M3 Generation and A16 Bionic

Many applications and libraries contain a moderately sized set of commonly used
functions and a larger set of less commonly used functions. To minimize the number
of TLB entries required, and thus the number of TLB misses encountered, place the
commonly used functions into a small set of pages. Alternatively, restructure the
algorithm to improve the temporal locality of function calls, where possible. That is,
organize work to heavily use a function in a phase of execution, and then move on to
another phase with different functions, rather than interleaving many functions.

Fetches that miss the L1l TLB are delayed by several cycles or more. These delays can
result in no pops being delivered to Map until the translation is available.

Table 4.3. Common L1 Instruction TLB Metrics

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring

Events")

L11 TLB Miss Densityt: Frequency of speculative L1 instruction TLB misses
due to demand fetches compared to the count of all

<Ev L1I_TLB_MISS_DEMAND> / <Ev INST_ALL> retired instructions

L11 TLB Fill Density™: Frequency of speculative L1 instruction TLB fills for
any reason compared to the count of all retired

<Ev L1I_TLB_Fill> / <Ev INST_ALL> instructions

tAdditional TLB and Address Translation Metrics are available inTable 4.17: “Common
L1D TLB, Shared L2 TLB, and Address Translation Metrics"

Recommendation: Collect Commonly Used (Hot) Functions into a Small
Set of Pages or Improve Temporal Access Locality to Reduce Virtual
Address Translation Overhead:

[Magnitude: Medium | Applicability: Medium] Separate functions into
commonly used (hot) and uncommonly used (cold). Place the commonly used
functions into a small set of pages. Or, where possible structure algorithms to
heavily use a small set of functions and then move on to another set.
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L1 Instruction (L1l) Cache

Each core uses its own private L1 Instruction Cache. The L1l Cache is backed by
the Shared L2 Cache that is shared between instruction and data. See Section 4.6.4,
"Shared L2 Cache".

Table 4.4. L1l Cache Organization

Chip Capacity, Associativity, and Line Size
Performance Cores Efficiency Cores
M1 Generation and A14 Bionic 192KiB, 6-way, 64B lines 128KiB, 8-way, 64B lines
M2 Generation and A15 Bionic 128KiB, 4-way, 64B lines (reduced
M3 Generation and A16 Bionic associativity)

Note: Capacity and associativity specifications are provided for reference.
Software should check the appropriate sysct1 parameter to dynamically adjust
to CPU and chip configurations. See Appendix B, Dynamic Determination of
Chip-Specific Capabilities for more information.

Fetches that miss the L1 Instruction Cache are delayed by several cycles or more. These
delays can result in no pops being delivered to Map until the instruction bytes are
available.

Often, only portions of functions are actually commonly used. For example, functions
often have clauses to handle error conditions or unlikely cases. Because these clauses
are rare or will only occur when the application terminates, there is little benefit to
holding them in the instruction cache instead of other commonly executed code. Collect
the commonly executed portions of the function together to reduce the number of
cachelines that occupy space in the cache for common execution patterns. Collect
uncommonly executed portions and place them together, typically at the end.

Table 4.5. Common L1 Instruction Cache Metrics

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring

Events")

L11 Cache Miss Density: Frequency of speculative L1 instruction demand
cache misses compared to the count of all retired

<Ev L1I_CACHE_MISS_DEMAND> / <Ev INST_ALL> instructions

Recommendation: Collect Commonly Used (Hot) Portions of Functions
into a Small Set of Cachelines:

Separate portions of functions into commonly used (hot) and uncommonly
used (cold). Place the commonly used portions of functions into a small set

of cachelines to reduce the L1l Cache occupancy. That is, reduce the space in
the L1I Cache required for this function for typical execution. More specifically,
collect error conditions or uncommon "then"/"else" statements and place them
together at the end. These cachelines will only occupy space in the instruction
cache in rare circumstances.

[Magnitude: Medium | Applicability: Medium]
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4.4.4

Recommendation: Avoid L1l Cache Set Conflicts:

[Magnitude: Low | Applicability: Low] While unlikely to be a significant
problem, L1l Cache misses may result from set conflicts. Apple silicon uses 16KB
memory pages that may make this even more likely to occur, since independent
libraries tend to be aligned to page boundaries when they are loaded.

Branch Target Alignment

The Instruction Fetch Unit features flexible alignment of reads from the L1 instruction
cache coupled with aggressive alignment of instruction bytes into the Instruction
Decode Unit. In other words, the processor efficiently fills Decode no matter the position
within the instruction memory.

Some microarchitectures benefit from alignment of branch targets to the beginning of
an instruction cacheline. Thus, when the processor fetches a cacheline at the target

of a branch, the Instruction Fetch Unit will provide a full line of bytes to Decode. To
accomplish this, software typically contains padding nop instructions prior to the branch
target to shift the target to the beginning of a cacheline, while allowing fall through
execution to the target to execute properly.

Because of the alignment capabilities, software alignment of branch targets is generally
unnecessary and sometimes detrimental. Rather, software should retain unaligned
branch targets in favor of reduced code size.

Recommendation: Refrain From Aligning Branch Targets Through Added
Unnecessary Instructions:

[Magnitude: Low | Applicability: Medium] Avoid alignment of branch targets
to cacheline boundaries through the addition of extraneous nop instructions.
These alignment instructions do not typically improve performance and
adversely affect code size and instruction cache performance.

Taken Branch Reduction

Taken branches cause an interruption in the fetch sequence. As described in

Section 4.4.3, "Branch Target Alignment”, the Instruction Fetch Unit reads groups

of instructions even when they span a cacheline boundary. However, the Fetch Unit
must discard instructions that are fetched with the group that appear after a predicted
taken branch. (For an in-depth discussion of branch terminology, see Section 1.4,
“Branch Terminology".) When the Fetch Unit frequently delivers only partial groups of
instructions to Decode, the processor may suffer from a bandwidth bottleneck. This
bottleneck is most often encountered when executing short loop bodies with high
iteration counts.

Some common taken branch reduction optimizations include:

* Function inlining: Eliminates both a call-type taken branch and a return-type taken
branch (and often allows for optimization across the caller and callee).

* If-conversion: Eliminates branches by converting them into conditional instructions,
such as conditional move. (See Section 4.4.5, "Conditional Branch Mispredicts and
Conditional Instructions”)
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* Hot path straightlining (code layout optimization): Reduces taken branches by placing
the commonly executed target instructions along the fall-through path from the
branch. When the taken path is swapped with the fall-through path, the branch
condition must be inverted. It is especially important to ensure that error-handling
code is reached via a taken branch so that normal operation falls through.

° In C++20, use the [[likely]] and [[unlikely]] attributes to empower the
compiler to optimize for the common path. See https://en.cppreference.com/w/cpp/
language/attributes/likely for more information.

° In C and older versions of C++, use _ builtin_ expect() Or
__builtin expect with probability() to empower the compiler. See https://
[lvm.org/docs/BranchWeightMetadata.html for more information

#define likely(x) __builtin expect(!!(x),1)
#define unlikely(x) __builtin expect(!!(x),0)

int idiv(int a, int b)

{
if (unlikely(b == 0)) err(DIV_BY ZERO);
return a/b;

* Loop unrolling: Reduces taken loop-back branches by placing additional copies of the
loop body along the fall-through path, thus converting taken loop-back branches to
fall-through branches.

° For counted loops (iteration count is known when the loop begins execution),
unrolling is particularly useful because the iteration count comparison and
backward branch can be eliminated for all but the last unrolled iteration. This
reduces code size and uses fewer execution resources. Should the unrolled amount
not be evenly divisible into the total iteration count (ex., loop unrolled to 4 copies
for 30 iterations), a remainder loop can be included to iterate over the remaining
iterations (ex., 7 iterations through the main loop body to execute 28 original
iterations, and 2 iterations through the remainder loop).

Table 4.6. Common Branch Instruction Mix and Direction Metrics

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring

Events")

Branch Density: Proportion retired branch instructions (including calls

<EvINST BRANCH> / <Ev INST ALL> and returns) of all retired instructions

Call Density: Proportion retired call (direct and indirect)

<EvINST BRANCH_CALL> / <Ev INST ALL> instructions of all retired instructions

Return Density: Proportion retired return instructions of all retired

<Ev INST_BRANCH_RET> / <Ev INST_ALL> Instructions

Indirect Branch Density: Proportion retired indirect branch (including call)

<Ev INST_BRANCH_INDIR> / <Ev INST ALL> instructions of all retired instructions
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4.4.5

Table 4.6. Common Branch Instruction Mix and Direction Metrics (cont.)

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring

Events")

Taken Branch Density (of instructions): Proportion retired taken branch instructions of all

<Ev INST_BRANCH_TAKEN> / <Ev INST_ALL> retired instructions

Taken Branch Density (of branches): Proportion retired taken branch instructions of all
<Ev INST_BRANCH_TAKEN: / <Ev INST_BRANCH> retired branches

Recommendation: Reduce Taken Branch Density to Improve Instruction
Fetch Bandwidth:

[Magnitude: Medium | Applicability: High] When taken branch densities
approach 1in 8 instructions, unroll loops, optimize conditionals to commonly fall
through (increase straight line code), and apply other general branch reduction
techniques.

Conditional Branch Mispredicts and Conditional Instructions

The Arm instruction set provides both conditional branches and a limited set of
conditional (predicated) instructions. The conditional instructions include three basic
types:

1. Conditional moves: For example, CSEL that writes the destination with one of two
input values based on the condition.

2. Conditional sets: For example, cSET that sets the destination to one of two fixed
values based on the condition.

3. Conditional logic or arithmetic operations: For example, cInc that writes the
destination with either the input value or the input value plus one according to the
condition.

When writing a code sequence, a developer has a choice between a conditional branch
and a conditional sequence. Conversion of a control dependency (branch) into a data
dependency (conditional instruction) is referred to as "if-conversion.” Deciding when to
use a conditional instruction sequence depends on the expected execution cost.

When the processor correctly predicts conditional branches, the application executes
with optimal latency. Only the required instructions are executed and the out-of-order
instruction window remains full. More generally, the cost of an instruction sequence
including a branch is determined by four factors:

1. The probability that one path will be taken rather than another

2. The execution cost of each path

3. The probability of a branch misprediction

4. The cost of a branch misprediction

Note that the overall cost of a branch misprediction includes several components:

Copyright © 2024 Apple Inc. | 2024-03-21
104



Apple Silicon CPU Optimization Guide
Core Microarchitecture Optimization Conditional Branch Mispredicts and Conditional Instructions

The cost of instructions executed on the wrong path

The cost to reset the Instruction Fetch Unit and Map and Dispatch Unit to the correct
target

The cost of lost opportunity to speculatively execute younger instructions along the
correct path

These parameters may or may not be known at compile time, so heuristics may be
required.

The cost of a conditional instruction sequence is relatively simple to calculate, since the
outcome of the condition does not change the cost of the instruction sequence. The
overall latency includes that of a conditional instruction sequence whether the result of
the sequence is used or discarded. For an if-then-else construct, the overall latency is
the maximum of both paths, the correct and wrong paths.

General guidelines for selecting branches versus conditional instructions:

Use branches when the condition is highly predictable. The cost of mispredicts
will be low, and the code will be executed with optimal latency.

° Strongly biased branches are typically highly predictable. For further optimization,
place the commonly executed code at the fall through path of the branch. See
Section 4.4.4, "Taken Branch Reduction” for more information.

Use branches when the cost of executing the wrong path is higher than the
cost of mispredicts — that is, high path costs or low mispredict probability. High
path costs are a particular problem with conditional blocks that include the following
types of instructions:

° Long chains of dependent operations, particularly chains with multicycle latencies
such as FP calculations

° Complex, long-latency instructions such as divide, load with de-interleave, and
table lookup

° Loads that are likely to stall due to cache or TLB misses (use performance
monitoring to identify these memory operations)

Use conditional instructions when the cost of mispredicts is higher than the
cost of executing the "wrong" path, i.e. low path costs and very unpredictable
branch outcomes. For example, use conditionals if the cost of executing both paths
simultaneously is similar to executing just the correct path. Likewise, use conditionals
when the mispredict rate is high. The extra cost of always executing the wrong path
along with the correct path may be less than the cost of the mispredictions.

Broadly, the instruction set includes a number of instructions that conditionally modify
data. Depending on the algorithm, use these instructions instead of branching to or
around code that unconditionally performs similar functions.

* ciInc: Conditional Increment returns, in the destination register, the value of the

source register incremented by 1 if the condition is true, and otherwise returns the
value of the source register.

c1nv: Conditional Invert returns, in the destination register, the bitwise inversion of the
value of the source register if the condition is true, and otherwise returns the value of
the source register.
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* CNEG: Conditional Negate returns, in the destination register, the negated value of the
source register if the condition is true, and otherwise returns the value of the source
register.

* cskL: If the condition is true, Conditional Select writes the value of the first source
register to the destination register. If the condition is false, it writes the value of the
second source register to the destination register.

* csET: Conditional Set sets the destination register to 1 if the condition is true, and
otherwise sets it to 0.

* cseTM: Conditional Set Mask sets all bits of the destination register to 1 if the condition
is true, and otherwise sets all bits to O.

* csinc: Conditional Select Increment returns, in the destination register, the value of
the first source register if the condition is true, and otherwise returns the value of the
second source register incremented by 1.

* csinv: Conditional Select Invert returns, in the destination register, the value of the
first source register if the condition is true, and otherwise returns the bitwise inversion
value of the second source register.

* csNEG: Conditional Select Negation returns, in the destination register, the value of the
first source register if the condition is true, and otherwise returns the negated value of
the second source register.

In this example, the code uses the cNEG instruction to compute the absolute value. The
added cost of executing the conditional negation, regardless of the condition, is small
compared to potential effects of mispredicting a branch based on the comparison.

int my abs(int y)

{
if (y < 0) return -y;
return y;

}

my_abs(int):

CMP w0, #0
CNEG w0, w0, MI
RET

In this second example, the code uses a FCSEL to select one input versus the other.
(Note that FMAX instruction handles Not-a-Number (NaN) values differently than the C
source code specifies.)

float my fmax(float a, float b)
{

if (a > b) return a;
return b;

}

my fmax(float, float):

FCMP s0, si
FCSEL S0, S0, S1, GT
RET
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In this third example, the compiler would not perform an if-conversion on function

light att() because the memory store would not occur on the false path. In function
light att2(), however, the compiler performed the transformation after the store was
added to both paths. Note, though, that Light att2() may incur a memory access fault
on the memory address in X0 when (d < 0) where it would not have in 1ight _att().
Similarly, that 1ight_att2 () may incur a cache miss on the memory address in x0 when
(d < 0) where it would not have in 1ight_att (). When altering the source code in this
manner, understand how res is set and used in relation to d in the calling functions.

void light_ att(float &res, float d, float base)

{
if (d < 0)

res = base*d;

}

light att(float&, float, float):
FCMP s0, #0.0
B.PL .LBB3_2
FMUL so0, s0, s1
STR S0, [X0]

.LBB3_2:
RET

void light att2(float &res, float d, float base)

{
res = ((d < 0) ? base*d : res);
}
light att2(float&, float, float):
LDR S2, [X0]
FMUL sl, so0, si
FCMP s0, #0.0
FCSEL S0, S1, S2, MI
STR S0, [X0]
RET

In this fourth example, cSET can be used to set Boolean values based on conditions.

bool in range(int y)

{
bool result = false;
if (y < 10 && y > 4)
result = true;
return result;
}
in range(int):
SUB W8, WO, #5
CMP W8, #5
CSET W0, LO
RET

Use the following metrics to identify general and conditional branch misprediction rates.
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4.4.6

4.4.7

Indirect Branch and Indirect Call Mispredicts

Table 4.7. General and Conditional Branch Mispredict Metrics

Name and Formula

(Event Definitions: Section 6.2, “Performance Monitoring
Events")

Description

Mispredicted Branch Density (of instructions):
<Ev BRANCH_MISPRED_NONSPEC> / <Ev INST_ALL>

Proportion retired mispredicted branches of all
retired instructions

Mispredicted Branch Density (of branches):
<Ev BRANCH_MISPRED_NONSPEC> / <Ev INST_BRANCH>

Proportion retired mispredicted branches of all
retired branches

Mispredicted Conditional Branch Density (of
instructions):
<Ev BRANCH_COND_MISPRED_NONSPEC> / <Ev INST_ALL>

Proportion retired mispredicted conditional branches
of all retired instructions

Recommendation: Use Conditional Instructions to Reduce Conditional

Branch Mispredictions:

[Magnitude: High | Applicability: Medium] When a conditional branch is
difficult to predict and the added cost of executing the instructions on the wrong
path is minimal, execute instructions from both paths and use conditional data
movement to select the correct outcome.

Indirect Branch and Indirect Call Mispredicts

The processor also predicts indirect branch and indirect call targets. Returns are also
indirects but have a dedicated prediction mechanism optimized for their expected
pattern (see Section 4.4.7, "Return Address Stack” for more details). Use the following
metrics to identify indirect branch and indirect call misprediction rates:

Table 4.8. Indirect Branch and Indirect Call Mispredict Metrics

Name and Formula

(Event Definitions: Section 6.2, “Performance Monitoring
Events")

Description

Mispredicted All Indirect Branch Density (of
instructions):
<Ev BRANCH_INDIR_MISPRED_NONSPEC> / <Ev INST_ALL>

Proportion retired mispredicted indirect branches
including calls and returns of all retired instructions

Mispredicted Indirect Branch Density (of
instructions):

(<EV BRANCH_INDIR_MISPRED_NONSPEC> -

<Ev BRANCH_RET_INDIR_MISPRED_NONSPEC> -

<Ev BRANCH_CALL_INDIR_MISPRED_NONSPEC>) / <Ev INST_ALL>

Proportion retired mispredicted indirect branches
(not including calls and returns) of all retired
instructions

Mispredicted Indirect Call Density (of
instructions):
<Ev BRANCH_CALL_INDIR_MISPRED_NONSPEC> / <Ev INST_ALL>

Proportion retired mispredicted indirect function calls
of all retired instructions

Return Address Stack

When a function call is decoded, the processor pushes the address of the next
instruction (the return address) onto the Return Address Stack. This allows a single
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function to be called from multiple call points while predicting correct return addresses.
Like other indirect branch predictions, the return target is verified during execution,

and may result in a misprediction (pipeline flush). Most well-formed code should not
need modification to optimize for Return Address Stack behavior. However, follow these
guidelines:

* Use recognized call and return instructions. Use the expected instructions so
that the processor properly manages the Return Address Stack. Avoid custom code
sequences, such as regular branches, to implement returns.

° For calls: BL or BLR. Branch with Link branches to a PC-relative offset or to an
address in a register, setting the register X30 to pc+4. It provides a hint that this is a
subroutine call.

° For returns: RET, which is a specific flavor branch through register. It provides a hint
that this is a subroutine return.

* Use properly paired calls and returns. Avoid using a single return instruction to
simultaneously return through multiple stack levels. This restriction mostly affects
unusual code such as the C language longjmp standard library routine, which can
corrupt the RAS if it jumps back to the location of the last setjmp call without
simulating any returns that would have otherwise occurred. Counterintuitively, a “fast”
single RET that skips over several intervening returns may end up being slower overall
than a “slow” return sequence that performs all of the RET instructions. By skipping
returns, the Return Address Stack may become misaligned with actual execution,
resulting in many mispredictions afterwards.

* Restructure algorithms to avoid deep call stacks. Inline short functions where
possible to reduce call stack depth, especially those that primarily just call another
function. Use recursion sparingly, if at all. Inlining also integrates the function
body into the caller, eliminating any computational redundancy and data movement
overhead, often resulting in further performance improvement.

Use the following metrics to measure return mispredict rates. Occasional return
mispredictions will occur even if all of the above guidelines are followed. For instance,
the processor and operating system do not save and restore the contents of the RAS
during process switches. Therefore returns executed immediately after the process is
switched back into the processor may encounter an empty RAS.

Table 4.9. Return Mispredict Metrics

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring

Events”)

Mispredicted Return (of instructions): Proportion retired mispredicted function returns of all

<Ev BRANCH_RET_INDIR_MISPRED_NONSPEC> / <EvINST ALL>  |retired instructions

Mispredicted Return (of returns): Proportion retired mispredicted function returns of all

<Ev BRANCH_RET_INDIR_MISPRED_NONSPEC> / retired returns

<Ev INST_BRANCH_RET>
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4.4.8

Recommendation: Leverage the Return Address Stack By Using Well
Formed Call-Return Sequences and Limiting Call Depth:

[Magnitude: Medium | Applicability: Low] When calling and returning from
functions, use properly paired recognized call and return instructions. Examine
the call stacks for any regions of execution that commonly exhibit high return
mispredicts. Correct any improperly paired or non-standard calls and returns. If
significant mispredicts remain, limit call stack depth through algorithmic changes
and function inlining.

Multi-pop Instructions

Some complex instructions require multiple pops to implement the instruction's
functionality. These include instructions that read more than three source registers,
write multiple destination registers, and use functionality from multiple pipelines.
However, use of these instructions improves computational density by packing a lot
of functionality into a single 32b instruction.

Cracked instructions require sequences of 2 or 3 pops. The processor inserts the pop
sequence seamlessly between pops from the prior and subsequent instructions.

Microcoded instructions require sequences of 4 or more pops. In addition, the
processor may not be able to seamlessly integrate these pops into the pop stream and
thus will incur further overhead.

As a general guideline, when using the full capability of these instructions, the added
microoperations are more than worth their cost, compared with implementing the same
functionality with a collection of available individual instructions. However, if the full
functionality is not needed, consider alternatives.

Multi-pop instructions include:

* Load and store operations with address writeback: These common cracked
instructions require an extra pop to perform the address update. Avoid chains of
these instructions because of the added pop bandwidth consumed as well as the
added dependencies. Use one adjustment per block of loads and/or stores. (See
Section 2.8.1, “Avoid Chains of Pre- and Post-Indexed Operations"”). Formats:

LDx/STx Rt, [Xn, #imm]! // Pre-index addressing mode
LDx/STx Rt, [Xn], #imm // Post-index addressing mode

* Paired load operations: These common cracked instructions have two destination
registers and are cracked before renaming. However, unless the operands are Q-
sized, the processor will re-fuse them back into a single pop before sending them
to the Load and Store Execution Units. Use these instructions wherever possible.
Example instructions:

LDP{SW} Rtl, Rt2, ...
LD{N}P Dtl, Dt2, ...

* Paired ASIMD&FP store operations: These common cracked instructions require
an additional pop. Use them wherever possible to improve code density. Example
instructions:
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ST{N}P {SDQ}tl, {SDQ}t2,

* ASIMD&FP load and store operations that use an 1s1 #4 or <extend> #4: These
less common cracked instructions require an additional pop to compute the address.
Use them wherever possible to improve code density. Example instructions:

STR Qt, [Xn, Xm, 1lsl #4]

* Instructions that move data between integer and ASIMD&FP and include
another operation: These less common cracked instructions require two operations
such as conversion along with data movement. Use them when necessary to improve
code density. Example instructions:

FCVTAS Rd, Dm
SCVTF Dd, Rm
DUP Vd.2D, Rm
INS Vd.2D[x], Rm

* Atomics (Load-and-operation (LDop), Store-and-operation (STop), Compare-
and-Swap (CAS), Swap): These instructions perform atomic operations and replace
more complex sequences of instructions with barriers. If the full instruction behavior
matches the required functionality, in particular for synchronization operations, use
these instructions. These instructions are cracked with the exception of CAS. Example
instructions:

LDSMAX Rs, Rt, [Xn]
STCLRA Rs, [Xn]
CAS Rs, Rt, [Xn]

* Table vector lookup: These instructions may be single pop, cracked, or microcoded
depending on the size of the table. Use the smallest sized table that meets the needs
of the algorithm. Example instructions:

TBL vd, {Vn, Vn+l, Vn+2}, Vm
TBX vd, {Vn, Vn+l, Vn+2}, Vm

* Vector element loads and stores: These instructions offer powerful element
interleaving and de-interleaving that is not easily achievable with combinations of
other instructions. Most of these instructions are microcoded. Use them when
necessary, but consider reorganizing the data structure when possible to eliminate
frequent interleaving and de-interleaving. Example instructions:

LD3 { Vn.<T>, Vn+l.<T>, Vn+2.<T> }, [Xn]

* Brain floating point (b£1oat16) mathematical operations: These instructions
(BFDOT, BFMMLA) require a sequence of 3-8 general vector pops to complete.
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4.5

Recommendation: Leverage Cracked and Microcoded Instructions When
the Full Instruction Functionality is Needed:

[Magnitude: Low | Applicability: Medium] While cracked and microcoded
instructions require multiple pops to implement, they typically offer complex
operations and improve code density. Selectively use microcoded instructions
due to their higher overhead, using simpler versions or recoding the algorithm
when possible.

Instruction Processing Map and Execution
Optimization

The following sections describe optimization opportunities for identifying and improving
Map and Execution issues in Instruction Processing.

Sustained pop bandwidth (assuming a broad mix of pop types) is limited by Map
bandwidth, in other words, the number of pops that can be inserted into the Instruction
Window per cycle. Each Map slot is capable of handling any type of pop, and on
average, execution will not exceed more than the sustained pop bandwidth.

Burst pop bandwidth is achieved when all of the functional units execute a pop at the
same time. This is possible due to buffering of instructions in the instruction window.
Note that store pop address and data parts are counted separately (See Section A.3.4,
"Load and Store Execution Unit Bandwidth"” for more details).

Table 4.10. pop Execution Bandwidth

Chip pops Per Cycle
Performance Cores Efficiency Cores
Sustained [Burst Sustained [Burst
M1 Generation 8 17: 4 10:
A14 Bionic 6 Integer 3 Integer
2 ASIMD&FP
4 ASIMD&FP 2 LD/ST(A) + 2 ST(D)
M2 Generation 31D +2ST(A) +2 5 14:
A15 Bionic and A16 Bionic ST(D) 4 Integer
M3 Generation 9 19: 2 ASIMD&FP
8 Integer 2 LD/ST(A) + 2 ST(D)
4 ASIMD&FP
3LD+2ST(A)+2
ST(D)

Integer Execution Unit latencies are typically 1to 3 cycles, excluding divide-related
instructions. Advanced SIMD and FP latencies are typically 2-8 cycles, excluding divide-
related instructions. Instruction group latency and bandwidth tables are located in
Appendix A, Instruction Latency and Bandwidth.

The instruction throughput metric, measured as instructions retired per clock (IPC),
provides a first-order indication of processor performance. High throughput workloads
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4.5

will have an IPC near the sustained pop bandwidth of the processor. In these cases,
the processor is encountering no bottlenecks and finding sufficient independent
instructions when executing the given code and is effectively using its maximum
sustainable resources.

Table 4.11. Instruction Throughput Metric

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring
Events”)

Instructions Per Clock (IPC): Rate of Instruction Processing
<Ev INST_ALL> / <Ev CORE_ACTIVE_CYCLE>

However, even with a high IPC, it may well be possible to improve performance further.
High IPC only means that the processor is effectively executing the instructions as
specified. Depending on the algorithm, there may be other instructions available that
perform more actual work per instruction. For example, a vectorized workload that runs
25% lower IPC than a scalar implementation of that same workload likely out performs
that scalar implementation. In other cases, one instruction may perform the work of
several and require fewer clocks cycles. The net result may be a lower IPC but higher
overall performance. For example, UBLAL performs an unsigned absolute difference, up
converts that result, and then accumulates it with previous results.

Recommendation: High IPC Does Not Necessarily Mean High
Performance. Improve the Fundamental Algorithm or Implementation of
the Algorithm:

[Magnitude: High | Applicability: High] Especially when the IPC is high,
explore algorithmic improvements such as more efficient data structures that
require fewer instructions to access and manipulate. Explore vectorization to
improve throughput per instruction, and leverage the rich set of instructions
available in the Arm ISA to efficiently implement the algorithm (see Chapter 2,
ISA Optimization: Overview & Integer Unit).

Movement of Data from General Purpose Registers to Vector
Registers

The Arm ISA offers several instructions that transfer data from the general

purpose registers to the vector registers, including DUP (general ), FMOV(general),
INS(general), MOV(from general), SCVTF(scalar), UCVTF(scalar). When
these instructions execute, they consume a load issue slot. The movement portion

of these instructions (MOVE2VEC) has a latency of 4 or 5 cycles, depending on
microarchitectural condition. The remainder of this section assumes 4 for illustrative
purposes.

When the data is written directly to the #/s/D subset of the Vector register (for example,
versions of the FMov instruction), no additional latency is incurred. However, if the data
is destined for other portions of the vector register or needs to be duplicated or type
converted, an additional logic operation is required. For instructions that leave some
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4.5.2

elements of the destination vector register unwritten, the latency through that vector
register source is 2 cycles.

In general, minimize data movement from the general purpose registers to the vector
registers since the operations incur additional latency and may block loads from

issuing. For example, consider the following code snippet. According to the program
specification, the algorithm may load an integer value and convert it into a floating-point
value:

LDR W0, [X1] // Loads into a general purpose register
SCVTF D1, WO // 4+3 cycle latency, 4 for the movement and 3 for the conversion

The above sequence incurs 11 cycles of latency: 4 for the load instruction and 7 for the
convert instruction. Instead, do the following:

LDR S0, [X1] // Loads directly into a vector register
SCVTF D1, SO // 3 cycle latency for the conversion, with no movement delay

While s0 is nominally a “floating point” register, it can still contain integer values. By
avoiding a superfluous trip between functional units, this version is significantly faster, 7
cycles instead of 11.

It can sometimes be more efficient to perform simple mathematical operations involving
integers in the ASIMD&FP Execution Unit, if it avoids excess movement between the
Integer and ASIMD&FP Execution Units. In the previous example, if a multiplication or
addition is necessary to scale or shift the loaded integer value before conversion with
scvTrF, it will often be faster to insert an integer-typed SIMD instruction into the middle
of the second sequence than an integer unit instruction into the first. This integer-typed
SIMD instruction operates over all elements, and effectively wastes all but element O.
However, because SIMD instruction latencies are typically longer than similar operations
in the Integer Execution Unit, the latency benefits can be lost if too many integer
instructions are executed in the SIMD unit.

Recommendation: Minimize Data Movement Between General Purpose
Registers and Vector Registers:

[Magnitude: Low | Applicability: Medium] In general, minimize movement
back and forth between the general purpose registers and the vector registers

to avoid latency associated with the movement. For short sequences of scalar
integer code where data is destined for the ASIMD&FP Execution Units, consider
loading it directly into the vector register file (or leaving it in the vector register
file), and operating on it using SIMD integer-typed instructions (wasting all

but element 0) to avoid excess data movement. Data movement between
registers, though, is still typically significantly faster than executing a vector store
instruction followed by an integer load instruction.

Movement of Data from Vector Registers to General Purpose
Registers

When moving results from the vector registers to the general purpose registers without
any type conversion, the ARM ISA offers uMov, SMOV, FMOV, Oor MOV (to general). FMOV
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just moves the FP register contents directly over to the integer register file without any
type of conversion, while umov and sMov perform a move along with a sign or zero
extend of the integer value being moved, requiring extra latency. This may be common
especially for byte- and halfword-sized integers. However, for cases when sign or zero
extension are not needed, use FMOV, even if the value being moved is an integer. These
data movement instructions execute in 3 or 4 cycles of latency.

Recommendation: Use FMov Instruction When Moving Data from Vector
Registers to GPRs when No Conversion is Needed:

[Magnitude: Low | Applicability: Medium] The FMov instruction does not
perform any conversion when moving data from the vector registers to the
general purpose registers, whereas uMov and sMov do. Use the lower bandwidth
and lower latency FMOV wherever possible.

The Arm ISA offers a number of related instructions to convert and move floating point
values in vector registers H/S/D to integer (or fixed point) values in the general purpose
registers: FCVT (AMNPZ) (SU) (scalar). These require an operation to perform the
conversion as well as an operation to move the data, resulting in a latency or 6 or 7
cycles.

45.3 Preferred Instructions for Common Operations

Use the following preferred instructions for common operations.
4.5.3.1 Register Data Copy
Use the following preferred instructions for creating copies of values in registers:

Table 4.12. Register Data Copy Instructions

Register Type |Register Data Copy Instructions

Integer MOV Xd, Xn
ORR Xd, XZR, Xn // OR a 0 with Xn into Xn
ADD Xd, Xn, #0 // Add a 0 to Xn into Xd
ASIMD&FP FMOV Dd, Dn

MOV.2D Qd, On
ORR.16B Vd, Vn, Vm when (Vm==Vn) // Or Vm with itself into vd

When creating multiple copies of a value in registers, avoid chaining, and instead create
multiple copies from the original:

MOV X6, X5
MOV X7, X6 // Avoid chaining copies

MOV X6, X5
MOV X7, X5 // Prefer creating multiple copies from the original

Recommendation: Use Preferred Instructions for Creating Copies of a
Value in Registers:

[Magnitude: Medium | Applicability: Medium] Use the preferred instructions
and avoid chaining.
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4.5.3.2

45.3.3

Register Zeros

Use the following preferred instructions for zeroing registers and breaking dependence
chains:

Table 4.13. Register Data Zero Instructions

Register Type |Register Data Zero Instructions

Integer MOVZ Xd|wd, #0 ; Equivalent to MOV Xd|wd, #0

ASIMD&FP MOVI.2D Qd, #0

Because the Arm ISA is a fixed-length instruction set, moving an immediate of O to

a register is the same number of instructions bytes as any other instruction. Other
variable-length instruction sets recommend using other operations to zero registers that
do not involve an immediate to reduce code size.

Note that while Exclusive-OR of a register with itself produces a 0 value on the Arm ISA,
it does not break dependency chains like it may on other ISAs. That is, the Exclusive-OR
will not execute until the source register has been written by the producer instruction,
and that will in turn delay the consume of the Exclusive-OR. Specifically, in the following
example, the EOR enforces a specific ordering of the two loads:

LDR X2, [X1]
EOR X3, X2, X2 // Dependencies through X2 and X3 are enforced
LDR X4, [X1, X3]

See the description of "Address dependency" in Section E2.3.2 of the Arm Architecture
Reference Manual for more information.

Recommendation: Use Preferred Instructions for Zeroing Registers:

[Magnitude: Low | Applicability: Low] To zero a register, use specific move
immediate instructions. Unlike other architectures, move immediates are the
same code size as other instructions that could zero a register, and thus other
combinations are not needed. Also unlike other ISAs, Exclusive-OR operations
where both inputs are the same register must obey producer dependencies.

Register Constants

Use the following preferred instructions for loading constants into registers:

Table 4.14. Register Data Constant Instructions

Register Type |Register Data Constant Instructions

Integer MOVZ X|Wd, #imm

MOVN X|Wd, #imm

ORR X|Wd, X|Wzr, #imm
EOR X|Wd, X|Wzr, #imm
ADR Xd, <label>

ADRP Xd, <label>

BL <label>
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453.4

4.5.4

Recommendation: Use Preferred Instructions for Loading Constants into
Registers:

[Magnitude: Low | Applicability: Medium] Use the prefer instructions for
loading constants. However, prioritize the use preferred instruction pairs where
applicable.

Limited FPCR and FPSR Bandwidth

Reads and writes to the floating point Status Register (rPsr) and floating point Control
Register (FPCR) incur high access cost. Because of the high cost, do not read and write
these registers frequently, but rather limit access to ho more than every few thousand
instructions.

Recommendation: Limit Read and Write Frequency to Floating Point
Control and Status Registers (FPcR and FPSR):

[Magnitude: Low | Applicability: Low] To avoid the high cost of these
operations, limit access to no more than every few thousand instructions.

Unroll and Software Pipeline Long Sequential Loop Bodies

When executing loop bodies with long regions of sequential code (for example, several
dozen instructions or more), the processor must fetch and map the entire loop body into
the instruction window before proceeding to the next iteration. This may delay execution
of independent work available in subsequent iterations while fetching and mapping
remaining dependent work from the first iteration. And, because the instruction window
is of finite size, few iterations may be resident in the instruction window prior to it filling
and stalling the Mapper.

Unrolling and interleaving instructions from multiple iterations may allow independent
work from multiple iterations to move into the instruction window faster. Unrolling comes
with a cost, however, in that it often increases the code size and can cause instruction
cache and TLB capacity issues. Software pipelining techniques also aim to overlap loop
iterations by staggering the start of subsequent iterations in a continuous manner before
previous iterations have been completely inserted into the instruction window. Software
pipeline transformations are more complex but can make independent work available to
the processor with, in some cases, less code size increase.

Compilers will often unroll automatically according to various heuristics when higher
levels of optimization are specified.

For more direct control, see #pragma unroll loop in the Clang Language Extensions
guide.
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Recommendation: Perform Limited Unrolling with Interleaving or Software
Pipelining of Long Loop Bodies for Improved Parallelism:

[Magnitude: Medium | Applicability: Medium] For code sequences that
consist of long regions of sequential code, consider limited loop unrolling and
interleaving of the instructions of the unrolled copies. Consider this technique
when parallelism across iterations is high but actual IPC is not. After performing
this optimization, check instruction cache and instruction TLB miss rates to
identify any new bottlenecks that might have been created.

4.6 Instruction Processing Memory Optimization

The following sections describe optimization opportunities to identify and improve
memory issues.

Data movement between memory and the processor cores frequently limits overall
application performance. This section describes the memory-system hierarchy and
highlights important principles to effectively use resources. Note that inefficient use of
cache capacities, organization of data, and patterns of access can have a major impact
on application performance.

4.6.1 Address Generation

Once the Scheduler issues a memory pop, the Load and Store Execution Units calculate
the virtual address. The address-generation logic contains the necessary adders and
shifters to handle inline most of the addressing formats defined in the Arm ISA (see
Section 2.8, "Addressing Forms, Instruction Immediates, and Operand Shifts"). The
only exception is for ASIMD&FP loads and stores when using 1s1 #imm Or <extend>
#imm forms when the immediate is 4 or greater. As noted in Section 4.4.8, “"Multi-uop
Instructions”, these require an extra Jop to calculate the address.

Other addressing forms may require additional pops to update base registers or update
multiple elements.

4.6.2 L1 Data (L1D) TLB and Shared L2 TLB

After the processor computes a virtual address, the Load and Store Execution Unit
converts the virtual address to a physical address in order to access the memory
system. The translation process occurs in the Memory Management Unit which caches
the result of the translations in the Translation Lookaside Buffers. Application data pages
are 16KiB.

Table 4.15. L1D 16KiB-Page TLB Organization

Chip Entries (Coverage)

Performance Cores Efficiency Cores
M1 Generation 160 entries (2.5MiB) 128 entries (2MiB)
A14 Bionic 256 entries (4MiB)
M2 Generation and A15 Bionic 256 entries (4MiB) 192 entries (3MiB)
M3 Generation 256 entries (4MiB)
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Table 4.15. L1D 16KiB-Page TLB Organization (cont.)

Chip Entries (Coverage)
Performance Cores Efficiency Cores
A16 Bionic 160 entries (2.5MiB) (reduction)

If the processor cannot find a translation in the L1D TLB, it looks up the virtual address in
the much larger Shared L2 TLB. This L2 TLB also backs the L1l TLB.

Table 4.16. Shared L2 16KiB-Page TLB Organization

Chip Entries (Coverage)

Performance Cores Efficiency Cores
M1 Generation and A14 Bionic 3072 entries (48MiB) 1024 entries (16MiB)
M2 Generation and A15 Bionic 2048 entries (32MiB)
M3 Generation and A16 Bionic

If the processor cannot find a translation in any of the TLBs, then it automatically
initiates a page table walk for the virtual address via Memory Management Unit. A

full page table walk is a multi-step walk of a tree structure starting at the base node

and ending at a leaf node that contains the page's physical address. Steps require a
memory operation to access the appropriate node in the page table structure. The MMU
issues the memory request to the Shared L2 Cache, which may have the data cached.
Otherwise, the L2 Cache will send the request over the fabric to the memory system.

By leveraging multilevel TLBs and the Shared L2 Cache, the overhead due to virtual
memory translation gradually worsens as the working set size increases. Nonetheless,
Shared L2 TLB and MMU bandwidth is limited.

Use the following metrics to evaluate TLB performance.

Table 4.17. Common L1D TLB, Shared L2 TLB, and Address Translation Metrics

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring

Events”)

L1D TLB Miss Retired Density (of loads and Proportion retired load and store instructions that
stores): missed L1D TLB of all retired load and store

<Ev L1D_TLB_MISS_NONSPEC> / <Ev INST_LDST> Instructions

L1D TLB Miss Density (of L1D TLB accesses): Proportion speculative L1D TLB misses of L1D TLB
<Ev L1D_TLB_MISS> / <Ev L1D_TLB_ACCESS> accesses including loads, stores, prefetches, etc.
L1D TLB Fill Density (of L1D TLB accesses): Proportion speculative L1D TLB fills for any reason

of L1D TLB accesses including loads, stores,

<Ev L1D_TLB_FILL> / <Ev L1D_TLB_ACCESS> prefetches, etc.

Instruction L2 TLB Miss Density (of L11 TLB Proportion speculative L2 TLB instruction misses of
misses): unique L1 TLB misses (counted by fills into the L1I
TLB)

<Ev L2_TLB_MISS_INSTRUCTION> / <Ev L1I_TLB_FILL>
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4.6.3

Table 4.17. Common L1D TLB, Shared L2 TLB, and Address Translation Metrics
(cont.)

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring
Events")

Data L2 TLB Miss Density (of L1D TLB misses): |Proportion speculative L2 TLB instruction misses of
unique L1D TLB Misses (counted by fills into the L1D
<Ev L2_TLB_MISS_DATA> / <Ev L1D_TLB_FILL> TLB)

Instruction Table Walk Request Density (of data |Mean speculative instruction table walk read
L2 TLB misses): requests per instruction L2 TLB miss

<Ev MMU_TABLE_WALK_INSTRUCTION> /
<Ev L2_TLB_MISS_INSTRUCTION>

Data Table Walk Request Density (of data L2 TLB Mean speculative data table walk requests per data
misses): L2 TLB miss

<Ev MMU_TABLE_WALK_DATA> / <Ev L2_TLB_MISS_DATA>

Recommendation: Compact Data or Improve Temporal Access Locality to
Reduce Virtual Address Translation Overhead:

[Magnitude: Medium | Applicability: Medium] Avoid frequent long-latency
page table walks due to sporadically accessing sparse data. Utilize data
structures that keep the working page set within the TLB capacity limits. Or,
organize accesses to data to improve page temporal locality.

L1 Data (L1D) Cache

Each core uses its own private L1 Data Cache. It usually operates as a write-back
write-allocate cache. The write allocation policy keeps the recently written data in the
L1 cache, where it is conveniently located for re-reading. Load pops that hit in the L1D
Cache execute with a latency of 4 cycles. See Section A.3.1, “Load Latency"” for latency
ranges of more complex load instructions.

While the system operates on 128B cachelines, the L1D Cache operates on
64B cachelines. See Section 4.6.6, "Improving Cache Hierarchy Performance” for
recommendations on improving data cache hierarchy performance.

Table 4.18. L1D Cache Organization

Chip Capacity, Associativity, and Line Size
Performance Cores Efficiency Cores
M1 Generation and A14 Bionic 128KiB, 8-way, 64B lines 64KiB, 8-way, 64B lines

M2 Generation and A15 Bionic

M3 Generation and A16 Bionic

Note: Capacity and associativity specifications are provided for reference.
Software should check the appropriate sysctl parameter to dynamically adjust
to CPU and chip configurations. See Appendix B, Dynamic Determination of
Chip-Specific Capabilities for more information.
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4.6.4

Shared L2 Cache

Use the following metrics to evaluate L1D Cache performance.

Table 4.19. Common Data Cache Metrics

Name and Formula

(Event Definitions: Section 6.2, “Performance Monitoring
Events")

Description

Load L1D Cache Miss Retired Density (of
instructions):
<Ev L1D_CACHE_MISS_LD_NONSPEC> / <Ev INST_ALL>

Proportion retired L1D Cache loads that miss the
cache of all instructions.

Store L1D Cache Miss Retired Density (of
instructions):
<Ev L1D_CACHE_MISS_ST_NONSPEC> / <Ev INST_ALL>

Proportion retired L1D Cache stores that miss the
cache of all instructions.

Load L1D Cache Miss Retired Density (of retired
loads):

<Ev L1D_CACHE_MISS_LD_NONSPEC> /

(<Ev INST_INT_LD> + <Ev INST_SIMD_LD>)

Proportion retired L1D Cache loads that miss the
cache.

Store L1D Cache Miss Retired Density (of retired
stores):

<Ev L1D_CACHE_MISS_ST_NONSPEC> /

(<EV INST_INT_ST> + <Ev INST_SIMD_ST>)

Proportion retired L1D Cache stores that miss the
cache.

Load L1D Cache Miss Density (of load pipeline
accesses):

<Ev L1D_CACHE_MISS_LD> / <Ev LD_UNIT_UOP>

Proportion speculative load pipeline accesses that
miss the L1D Cache. Accesses may count more than
once if the load is replayed within the Load and Store
Execution Unit or is split across a cacheline, and
includes prefetches and other operations that may
use the pipeline.

Store L1D Cache Miss Density (of store pipeline
accesses):
<Ev L1D_CACHE_MISS_ST> / <Ev ST_UNIT_UOP>

Proportion speculative store pipeline accesses that
miss the L1D Cache. Accesses may count more than
once if the store is replayed within the Load and
Store Execution Unit or is split across a cacheline,
and includes prefetches and other operations that
may use the pipeline.

L1D Dirty Writeback Density (of load and store
pipeline accesses):

<Ev L1D_CACHE_WRITEBACK> /

(<Ev LD_UNIT_UOP> + <Ev ST_UNIT_UOP>)

Proportion speculative load and store pipeline
accesses that result in writeback of dirty data out of
the L1D Cache toward the L2 Cache.

Shared L2 Cache

Each cluster of cores uses a Shared L2 Cache which operates on 128B cachelines. It
is shared between instructions and data, and between all cores in the cluster. Load
pops that hit in the Shared L2 Cache execute with an average latency of 15 cycles
under unloaded conditions. Some loads may be a few cycles faster and some slower,

depending on microarchitectural conditions.
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Table 4.20. Shared L2 Cache Organization

Chip Capacity, Associativity, and Line Size

Performance Cluster
12MiB, 12-way, 128B lines
16MiB, 16-way, 128B lines

Efficiency Cluster
4MiB, 16-way, 128B lines

M1 Generation

M2 Generation

M3 Generation

A14 Bionic 8MiB, 16-way, 128B lines
A15 Bionic 12MiB, 12-way, 128B lines
A16 Bionic 16MiB, 16-way, 128B lines

Note: Capacity and associativity specifications are provided for reference.
Software should check the appropriate sysctl parameter to dynamically adjust
to chip configuration. See Appendix B, Dynamic Determination of Chip-Specific
Capabilities for more information.

Shared L2 Misses may be serviced by either the memory system, including the Memory
Cache (See Section 4.6.5, "Memory Cache"), or another cluster's caching hierarchy
depending on data ownership. Load pops that hit in another cluster's caching hierarchy
execute with a latency in the range of 50ns, which is closer to that of the Memory Cache
than the local cluster's L2. Heavy system traffic may increase these latencies.

4.6.5 Memory Cache

Attached to the DRAM interface is a Memory Cache (M Cache) operating on 128B
cachelines. It is shared by all agents on the chip that can access DRAM directly,
including the GPU and other co-processors and fixed function hardware. Load pops
that hit in the M Cache execute with a latency in the range of 35ns, while load pops
that access DRAM will execute with latency in the range of 95ns. These latencies may
increase if the system is experiencing heavy traffic.

Table 4.21. Memory Cache Organization

Chip Capacity, Associativity, and Line Size
M1 8MiB, 16-way, 128B lines

M1 Pro 24MiB, 12-way, 128B lines

M1 Max 48MiB, 12-way, 128B lines

M1 Ultra 96MiB, 12-way, 128B lines

M2 8MiB, 16-way, 128B lines

M2 Pro 24MiB, 12-way, 128B lines

M2 Max 48MiB, 12-way, 128B lines

M2 Ultra 96MiB, 12-way, 128B lines

M3 8MiB, 16-way, 128B lines

M3 Pro 12MiB, 16-way, 128B lines (reduced)
M3 Max 48MiB, 12-way, 128B lines

A14 Bionic 16MiB, 16-way, 128B lines

A15 Bionic 32MiB, 16-way, 128B lines
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Table 4.21. Memory Cache Organization (cont.)

Chip Capacity, Associativity, and Line Size
A16 Bionic 24MiB, 12-way, 128B lines (reduced)

Recommendation: Perform Cache Blocking Optimization Based on L1D and
L2 Shared Cache Sizes:

[Magnitude: Medium | Applicability: Medium] Some algorithms benefit from
dividing up the data set into blocks that will fit into the cache, then operating on
the blocks one-by-one. Do not block algorithms based on the M Cache capacity.
The M Cache is shared amongst several agents and large portions of the cache
may be consumed by those agents.

4.6.6 Improving Cache Hierarchy Performance
Consider these data layout optimizations to improve cache hierarchy performance:

* Eliminate false sharing: A performance bottleneck can occur when two or more
independent variables are allocated to the same 128B cacheline and are modified by
threads running on different core clusters. When a core in one cluster writes to one
of the independent variables, it will cache the line in its own Shared L2 Cache and
L1D Cache. This forces the line to be evicted from all other caches in the system.
Meanwhile, a core in the other cluster can attempt to write to the second varariable,
request the cache line, and the caching subsystem will move the entire line containing
both variables over to its Shared L2 Cache and L1D Cache. If the first core continues
to modify its variable, the line will then move back to the first core, and so on as the
cycle repeats.

This unnecessary cache line thrashing, or rapid and repeated movement of a

cache line back and forth between the clusters, can result in poor multithreaded
performance. To avoid this problem, simply add padding as needed between any
independent variables that may be used simultaneously by more than one core,
thereby ensuring that they are always allocated to different 128B cachelines. In
properly tuned code, any remaining cache line thrashing should only occur when
"true" sharing occurs, when individual variables are actively being shared by multiple
cores.

* Use cache line sharing constructively: Having multiple variables packed together
in the same cacheline can be beneficial. If two or more variables are commonly used
together by one core, but seldom used by different cores at the same time, pack
them into a single cache line to improve performance. Pack variables or data structure
elements that are accessed together into one 64B cacheline to match the L1D Cache
line size. When one datum is requested, the related data will naturally arrive with it in
the same cacheline, avoiding further cache misses. Data packed into the same 128B
cacheline will also benefit from constructive sharing when this larger line is cached
in the Shared L2 Cache, although two L1D misses may be incurred to bring both
constituent 64B lines into the L1D Cache from the Shared L2 Cache.

More broadly, identify the most commonly accessed (“hot") variables in structures
and place them together so they fall in the same cache line(s). Afterwards place
infrequently used (“cold") variables where space allows. Splitting “hot” from “cold"” in
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this manner may reduce the working set size, and thus improve the effectiveness of
the cache, because only the “hot"” portion of the structures will occupy cache space
in the common case. For example, group all of the pointers interlinking data nodes
together at the beginning of nodes for data structures such as linked lists or trees, so
that only one cache line per node loads during a typical list or tree traversal.

* Order data fields to minimize padding: Some high-level languages do not allow the
compiler to reorder individual data elements from that specified in the source, such as
fields in a structure in C. Further, these fields are also often aligned according to their
size (1B elements to 1B boundaries, 4B elements to 4B boundaries, etc.). To achieve
this alignment, padding bytes may be present in between fields. Order data elements
such that few gaps are present from the end of one element to the start of the next,
according to their natural alignment. In this example, placing the 1 byte bool elements
next to each other reduces padding bytes and overall structure size:

typedef struct mystruct { // sizeof() = 12
bool valid; // byte 0
int data; // [3 byte gap]; bytes 4-7
bool ready; // byte 7
} mystruct;
typedef struct mystruct2 { // sizeof() = 8
bool valid; // byte 0
bool ready; // byte 1
int data; // [2 byte gap]; bytes 4-7

} mystruct2;

False sharing often causes dramatic performance loss, and fixing such issues can lead
to significant performance improvement. Typically, identify and fix these issues first.
Then identify hot variables, placing them together in a compact order according to their
natural alignment. Pack cold variables into gaps to eliminate padding. Finally, pack the
remaining cold variables.

For information on the sizes of various data types, see Table 3.11: "Advanced SIMD
Intrinsic Data Types" and Writing Arm64 Core for Apple Platforms.

Recommendation: Avoid False Sharing by Allocating Independent Shared
Variables to Different 128B Cachelines:

[Magnitude: High | Applicability: Low] Avoid false sharing bottlenecks by
allocating each independent shared variable to a different 128B cacheline. This
avoids situations where a cached shared variable, possibly related a software
semaphore, is not inadvertently invalided from the cache due another core using
a different shared variable. Thrashing in this manner may significantly slow multi-
threaded performance.

Recommendation: Pack Hot Variables into the Smallest Set of Cachelines
for Improved Cache Hierarchy Performance, Concentrating Data
Commonly Used Together into the same 64B Cachelines.:

[Magnitude: High | Applicability: Medium] Identify and place the commonly
used variables into cachelines in a compact order to reduce padding according
to natural alignments. Place cold variables into gaps, and pack remaining cold
variables adjacent to the hot variables.
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4.6.7

4.6.8

Fast Load-to-Load Latency (Pointer Chasing)

The processor features a fast pointer chasing path with a 3-cycle latency. This works
with all forms of addressing when the base operand arrives directly from the load
execution unit as the data result of a prior load. The specific register number does not
matter. For example:

LDR X2, [Xn, #imm]! // Latency is 3 cycles when feeding into
// the base operand of a subsequent load
LDR Xt, [X2, Xm, lsl #imm]

An example of a pointer chasing loop:

label:
LDR R1, [R1, #8]
// Other Instructions: No writes to R1
BNE <label>

To further optimize this loop, pack the critical fields used by the "Other Instructions"
along with the next pointer into a single cache line. See discussion of "hot" fields in
Section 4.6.2, "1 Data (L1D) TLB and Shared L2 TLB".

Recommendation: Leverage Fast Load-to-Load Latency When Pointer
Chasing:

[Magnitude: Medium | Applicability: Medium] When quickly walking from
one data structure node to the next, ensure fast load latency by directly using the
result register from the first load as the xn (base) operand in the second load.

Do not put the result register in the xm (offset) operand of the second load nor
pass the result value through any intervening instructions. Instructions unrelated
to the result register in between the loads will not break this optimization.

Non-Temporal (NT) Accesses

Caches naturally store data close to the processor under the assumption that the data in
the cache line will be used again in the near term. Data that benefits from caching is said
to have temporal locality. However, some algorithms stream (read and/or write) through
large quantities of data with little temporal reuse. In these cases, storing the data in the
cache is counterproductive because it floods (or "pollutes") the cache with unneeded
data, forcing out potentially useful data.

The Load Pair with Non-Temporal Hint (.DNP) and Store Pair with Non-temporal Hint
(sTnP) instructions inform the memory system that the application is not likely to reuse
the data again soon. Based on these hints, the processor will optimize cache allocation
policies for particular cache lines to minimize pollution.

Use the Non-Temporal instructions in the following circumstances:

* Non-Temporal Loads: Use these versions of load instructions when the data is likely
to be used only briefly, such as when streaming through large blocks of memory. The
processor will retain the cacheline for a short time to allow accesses to additional
data elements in the same cacheline. Do not use non-temporal loads if the algorithm
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is likely to frequently use the data, nor if the algorithm will subsequently modify the
data. And do not mix non-temporal accesses with regular accesses during the window
of use. The processor will ensure correct memory ordering in these cases, but the
algorithm may suffer from poor performance.

* Non-Temporal Stores: Use these versions of store instructions when the data is
being streamed out to memory. The processor is most efficient when all 128 bytes of a
particular cache line are written by non-temporal stores within a brief window of time.
Within that window, do not mix regular store and non-temporal store accesses to the
same line, and do not use non-temporal stores if the algorithm is likely to read any of
the written data in the near future. The processor will ensure correct memory ordering
in these cases, but the algorithm may suffer from poor performance.

The Clang compiler provides a builtin that will allow the compiler to generated non-
temporal stores.

void _ builtin nontemporal_ store(T value, T *addr);

The types T currently supported are integer, floating point, and vector types. Note that
the compiler doesn't guarantee that it will insert non-temporal stores.

Recommendation: Utilize Non-Temporal Stores for Large Data Sets with
Low Temporal Locality:

[Magnitude: Medium | Applicability: Low] When streaming through large data
sets where the application is unlikely to access individual data elements again

in the near future, use non-temporal stores to avoid polluting the caches and
evicting more useful data.

Some library functions that implement memory movement, in particular memcpy (), are
optimized and use NT accesses where beneficial.

Recommendation: Utilize Tuned Library Functions for Data Movement,
Such as memcpy (), Rather than Writing Your Own:

[Magnitude: Medium | Applicability: High] These functions are optimized for
various scenarios, and include non-temporal accesses to improve performance.

Measure the non-temporal load and store rates with the following metrics:

Table 4.22. Common Non-Temporal Access Metrics

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring

Events")

Non-Temporal Load Density: Proportion speculative issued non-temporal loads of
<Ev LD_NT_UOP> / <Ev LD_UNIT_UOP> allissued load operations

Non-Temporal Store Density: Proportion speculative issued non-temporal stores of
<Ev ST_NT_UOP> / <Ev ST_UNIT_UOP> all issued store operations
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4.6.9

Unaligned Accesses

The cores support unaligned accesses to normal, cacheable memory for all available
data sizes. When executed sporadically, unaligned accesses generally complete without
any observable performance impact to overall execution. Some accesses will suffer
delays, however, and the impact is often greater for stores than loads.

* Loads: The L1 Data Cache is designed to be able to read data at any alignment. An
unaligned load that does not cross a 64B boundary has no associated performance
penalty and therefore will execute with the same latency as an aligned load. If the
unaligned load spans a 64B boundary and one portion experiences a cache miss,
however, then additional delay may occur. This is especially the case if both portions
experience cache misses, because the two miss requests will be handled serially.
Thus, in the worst case, an unaligned load that crosses a 64B boundary can take at
least twice as long to resolve as a normal cache miss. An unaligned load that spans a
virtual page boundary experiences a greater delay. It waits until it is the oldest active
load before executing, in order to safely perform both page translations, as needed.
Avoid this case if possible.

* Stores: Unaligned stores that cross 16-byte boundaries use two write ports into the
L1 Data Cache, one port for the portion of the store on either side of the boundary.
As a result, if a stream of unaligned stores occurs, performance might be up to 2x
slower than that of the aligned case, which can occur if every store crosses a 16-byte
boundary. In addition, just as with unaligned loads that span page boundaries, a store
that spans a virtual page boundary must wait until it is the oldest active store to
complete the page translations.

For example, optimized streaming memory operations like memcpy () and memset ( )
typically use 16B load and store operations. If software does not use 16B-aligned source
and destination buffers, then every store will cross a 16B boundary and every fourth load
will cross a 64B boundary. Both can also suffer from page-spanning penalties. Such
operations will see significant drop in performance without alignment.

Finally, if either loads or stores must be unaligned in a particular algorithm, but not
both, then it is usually preferable to have the loads be unaligned. While both suffer
page boundary spanning penalties, stores require more resources when spanning 16B
boundaries, while loads don't and further may not even suffer penalties for spanning
64B boundaries.

As a guideline, occasional unaligned accesses will not result in significant performance
loss, because the hardware efficiently manages accesses that span boundaries.
However, avoid accessing large memory buffers using continuous streams of unaligned
memory accesses, especially in performance-critical inner loops. Any misalignment
penalty is likely to be triggered repeatedly for a large number of sequential accesses,
which will eventually make unaligned access penalties become apparent. Accesses to
large buffers will inevitably lead to a fair number of loads and stores that span cache line
and/or page boundaries, which may result in reduced performance.
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4.6.10

Table 4.23. Common Access Alignment Metrics

Name and Formula Description
(Event Definitions: Section 6.2, “Performance Monitoring
Events")

L1D 64B Cacheline Crossing Access Density (of |Proportion of speculative load and store pipeline
load and store pipeline accesses): accesses that cross a 64B cacheline boundary.

<Ev LDST_X64_UOP> / (<Ev LD_UNIT_UOP> + <Ev ST_UNIT_UOP>)

L1D Page Crossing Access Density (of load and |Proportion of speculative load and store pipeline
store pipeline accesses): accesses that cross a 16KiB page boundary

<Ev LDST_XPG_UOP> / (<Ev LD_UNIT_UOP> + <Ev ST_UNIT_UOP>)

Recommendation: Minimize Unaligned Data Access For Large Arrays:

[Magnitude: Medium | Applicability: Low] When accessing large arrays, align
data according to the access size. Ex., for data accesses of 4B words, align data
elements to 4B boundaries (least significant 2 bits are O; #bxx..xx00). This will
prevent accesses from spanning boundaries.

Recommendation: If Unaligned Accesses are Unavoidable, Prefer
Unaligned Loads Over Stores:

[Magnitude: Medium | Applicability: Low] If unaligned accesses are
unavoidable due to algorithmic constraints, generally prefer unaligned loads

to unaligned stores. Stores suffer delays for more boundary cases than loads.
However, if loads significantly outnumber stores in the algorithm, eliminating load
penalties by aligning loads may improve performance if the store penalties are
hidden behind load execution.

Memory Dependence Prediction

Load and store pops may execute and send their requests to the rest of the memory
subsystem out of order and speculatively. Most of the time, this allows the memory units
to process multiple memory accesses in parallel, which translates directly into higher
performance execution. As with any other pops, however, the processor enforces in-
order execution when there is a true dependence between the pops. With load and store
Hops, it is possible to have dependencies through memory if a store is closely followed
by a load of an overlapping data element. Such dependencies are not caught by the
usual register-tracking mechanisms within each core. When a store and dependent load
execute out-of-order, a memory ordering violation occurs and the offending load must
be re-executed. If these violations occur often, performance can suffer significantly.

To minimize the number of violations while still allowing out-of-order execution, each
core includes mechanisms to predict whether a load may consume data written by an
older store that has not yet executed. This is especially challenging when the address of
an older store is not known when the load is ready to execute.

The matrix of potential outcomes is depicted in Table 4.24: "Store-to-Load Dependence
Prediction Outcome”.
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* Worst Performance: When a younger load is predicted to not depend on an older
store and is allowed to speculatively execute. As noted above, when the store's
address is computed and the dependence violation is detected, the processor flushes
the pipeline and restarts the load and subsequent instructions. This memory order
violation leads to wasted execution resources both to perform the flush, as well as to
re-execute of all pops that had speculatively executed.

* Poor Performance: When a younger load is predicted to depend on an older
store, but actually does not. These "phantom" dependences unnecessarily delay load
execution.

In some cases, the predictor must decide whether or not to insert a dependency

before data addresses can be computed for both the load and store in a particular
store-to-load pair. As a result, the processor must make an educated guess whether or
not a dependence may occur based on the past behavior for that pair of instructions.
Unfortunately, it may predict too conservatively when a store-to-load pair is only
occasionally dependent. Pipeline flushes are quite expensive, so it may favor the modest
expense of enforcing dependences. This might occur when address pointers for the load
and store are briefly sweeping past each other or when buffers only partially overlap, but
usually the instructions are not dependent. Thrashing may occur if the dependent and
not-dependent cases both regularly occur for the same store-load pairs. This may result
in patterns where dependences are enforced when none are needed and never enforced

when they are needed, leading to significant slowdown.

Table 4.24. Store-to-Load Dependence Prediction Outcome

Predicted Outcome

Not Dependent

Dependent

Actual
Outcome

Load Not dependent on Store

(Non-Overlapping Memory
Range)

High Performance:

Loads and stores may
execute at any time without
conflict

Poor Performance:

While a load was dependent
on a store at some

point in the past, this

overly conservative prediction
unnecessarily forces further
instances of that load to stall
and wait for store completion

Load Dependent on Store

(At Least Partially Overlapping
Memory Range)

Worst Performance:

Memory Order Violation: If
the older store's address is
unknown when the younger
load is ready to execute,
the younger load may
prematurely execute and
require a pipeline flush with
restart.

OR
Modest Performance:

If the older store's address

is known, the processor may
stall the load until the store is
known **

Modest Performance:

Loads are delayed

until just after stores
complete, properly honoring
dependencies but not stalling
excessively. **
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**Note that data forwarding from store to load is often slower than through registers,
resulting in modest performance compared with versions that communicate through
registers.

In real code, forwarding from a store to a load occurs surprisingly often. In particular,
any code that uses numerous read-modify-write accesses to its data structures is likely
to trigger these sorts of problems. Due to the large out-of-order window, the P cores
can easily attempt to process multiple read-modify-write sequences at once, so the
read of one sequence can occur before the write of the previous sequence is complete.
If repeated accesses to particular elements in the data structure sometimes (but not
always) occur "close" to each other, temporally, then memory ordering violations and
subsequent pipeline flushes can occur as a result of these accesses. Note that “close”
in this context means within the core’s out-of-order instruction window: repeated read-
modify-writes of the same element may trigger ordering violations if they occur within
a few loop iterations of each other, but not if they occur hundreds or thousands of loop
iterations apart.

Here are several types of data structures from real algorithms where store-to-load
stalling or predictor thrashing are likely to occur:

* Histograms: These data structures tally input data according to some characteristic,
and typically involve a read of the existing tally, followed by an increment and store
of the updated tally. When histogram updates occur at relatively high rates, the
processor may not have completed updating a first tally prior to beginning a second.
In such cases, the processor predicts whether the tally loaded for the second update
will come from memory or from the first tally's store. If from memory, the tally updates
can be performed in parallel, otherwise the processor must serialize the tally updates.

* Growing Data Structures: Suppose there is a loop that accesses a rapidly growing
data structure using read-modify-write accesses. At the beginning of execution when
the data structure is small, it is likely that older stores will feed younger loads because
of the small data set. The predictor will be trained accordingly to enforce those
dependencies. If the data structure stays approximately the same size, then this is the
ideal behavior. However, if the data structure grows, there are more data elements,
and the likelihood of accessing the same data node within the out-of-order window
is reduced. But, the predictor will already have been trained and will tend to enforce
phantom dependencies during execution that are not necessary.

* In-Place, Cache-Optimized FFT: A variant of the previous situation can occur when
the data structure stays the same size, but the access patterns to it create frequent
read-modify-write operations to individual elements at first, but fewer later on.

A real-world case of this can be found in an in-place FFT that has been optimized to
improve cache locality. One way to do this is to have loops that execute FFT butterflies
with the following data elements: (01)(23)(0123)(45)(67)(4567)(012345

6 7) ... The algorithm begins with very small, radix-2 loops, then proceeds into the
radix-4 loops that combine the results from the previous loops together. From there,

it proceeds to radix-8 loops that combine those results together, and so on. This
improves cache locality by performing as many FFT passes as possible on each block
of data while it fits within the cache, no matter what the cache size might be.

Unfortunately it also tends to create store-to-load dependencies as the radix-4
loops consume the outputs of the radix-2 loops very quickly. As with the previous
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case, these legitimate dependencies tend to train the predictor conservatively, so
that store-to-load dependence enforcement still occurs during later FFT passes. But
during these later passes, the working set is larger, and so the reuse of the same
data elements are spaced out much farther apart in time and seldom cause true
dependencies.

* Small, in-place, two-dimensional buffers: In operations involving two-dimensional
buffers, nearest neighbor elements are often read as input to help update the value
of element (m, n). If the elements are modified in-place, then element (m, n—1) will
be read back in to help compute (m, n) shortly after (m, n-1) was written. Depending
on the operation and data set size, the instructions to compute an entire row may fit
into a core's active instruction window. When this happens, store-to-load forwarding
scenarios can occur as the loads from (m, n) start executing before the stores from
(m, n=1) have completed. Similar scenarios can be constructed for in-place buffers
with larger numbers of dimensions.

* Passing Pointers: If a buffer is being accessed and updated by multiple pointers
that are incremented by different amounts during each loop iteration, they may
cross at some point during the loop. A one-time flush will occur after the pointer
collision, which will then be followed by a number of iterations of overly conservative
dependence enforcement.

* List of Pointers to a Small Object Pool: Perhaps the most pernicious access pattern
can be triggered when loop iterations must perform read-modify-write updates to a
small pool of data structures based on a long list of pointers. This pattern is quite
common in graphics or physics algorithms that maintain a pool of objects and then a
larger list of “links" between objects that are close to each other in space and need to
be considered during each simulation step. When the same object just happens to be
used in calculations during adjacent loop iterations, then dependence collisions and
flushes are quite likely. This sort of hard-to-predict dependence behavior can easily
cause thrashing between overly-conservative serialization and too little serialization.

* Frequently modified top of stack: In code that regularly pushes data to a stack
data structure and then quickly pops it back off again, load-store dependence
violations are likely. Moreover, if these locations on the stack are then used to hold
different data variables for other functions soon thereafter, then the stale store-to-
load predictions trained into the predictor for the earlier stack contents may trigger
excessive serialization of loads and stores for these later uses of the stack. On the
other hand, address calculations for stack accesses are often quite simple, so store
and load addresses can often be calculated quickly enough to avoid relying on the
predictor.

While these scenarios are not particularly common, speculative store-to-load prediction
thrashing can seriously degrade performance. Production code examples have been
seen that reduce performance by 50%.

Consider these strategies to avoid dependence prediction problems:

* Avoid Read-Modify-Write Data Accesses: The simplest way to avoid speculative
store-to-load thrashing is to avoid looping algorithms that require read-modify-write
access to data structures that are too large to be kept in registers. Algorithms where
the input and output buffers for each loop are separate naturally avoid memory
dependence violations. In contrast, violations may occur when one data structure
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is both read and written simultaneously within a single loop, so loads may read

what was just written by a recent store. While avoiding read-modify-write behavior

is often possible, it may require a radically different algorithm and data structures

that take up more space in memory than one might use with a read-modify-write-
based algorithm. For example, an algorithm that uses double-buffered data structures
instead of modify-in-place structures may be required. Another example is described
in Section 4.6.10.1, “Memory Dependence Prediction Example”.

* Explicit Test for Identical Elements: It is possible to use an if statement to
check explicitly for the case when pointers may happen to be pointing at the same
element, and treat these cases with special code. This may occasionally help, but
is not recommended because it will often just replace store-to-load dependence
problems with branch mispredictions, which may well be worse. Also, the test code
must execute on every loop iteration, slowing down the common case of no collision.

* Different Loops for Different Data Sizes: A better way to select special code for
colliding cases is to do the testing outside of the loop, which minimizes the number
of tests and branch mispredictions. For situations like the “growing data structure”
or "in-place FFT" examples, where it is known a priori that the early, short loops will
tend to trigger store-to-load dependencies, it can be helpful to use a second copy
of the loop body included specifically for these “small loop” cases. Any store-to-load
speculation problems that occur during these “early” loops will not affect speculative
predictions for loads and stores in the “long version” loop body, which is only used
when there is little or no potential for store-hit-younger-load problems. The small
drop in instruction cache performance associated with having two essentially identical
copies of the loop body can be easily amortized by the resulting performance savings.

* Rearrange Read-Modify-Write Data Accesses: For a case like the FFT example,
it is possible to shuffle the loop iterations to avoid dependence violations. A simple
reordering of the loop iterations will work to keep read-modify-writes of the same
iterations far apart, while still performing an FFT. For instance, change the order to (O
1(23)(45)(67)(0123)(4567)(01234567)...,performing all butterflies of
the same radix together as a complete pass before proceeding to the next radix level.
Cache performance is not as optimized with this ordering, but performing iterations
ordered this way up to about 1,024 data points or so is all that is necessary to avoid
memory ordering violations. One can then switch to the original cache-optimized
algorithm for later passes. This completely avoids store-to-load forwarding, which
is an even better solution than the previous "Different Loops for Different Data
Sizes" option above, and can be cache-optimized for any realistic L1 cache size.
Any algorithm where the order of accessing read-modify-write data elements can be
safely changed to move accesses to the same data element farther apart without
modifying the task that the code performs is amenable to this kind of alteration.

* Resorted Pointer List: Situations similar to the “List of Pointers” example, where the
store-to-load dependencies occur more randomly, may be more difficult to optimize.
One way that can be effective, however, is to sort the list of pointers to move read-
modify-write operations to the same objects away from each other, so that at least
they do not occur in adjacent loop iterations. This sorting can be done implicitly as the
list is initially assembled, by adding pointers to the list in a way that inherently keeps
re-uses of any particular object far apart. Or, it can be done between the creation of
the list and its use by executing a sorting pass that finds cases where adjacent loop
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iterations access the same objects and shuffling them farther apart in the operation
seqguence.

* Unroll Loops: In some algorithms, a load from every nth iteration of the loop
consumes data from a prior store. Unrolling the loop n times creates n copies of
the loads and stores and stabilizes the dependence pattern. 1 copy of the load always
obtains data from a prior store, while n-1 copies always obtain data from memory.
Unrolling may generally help even when such a pattern is not obvious. To an extent,
more copies of the loads and stores create more opportunities for the predictor to find
stable dependence patterns between them.

These improvements or others like them will not always be possible, either because
the original algorithm is not amenable to change or because the changes cause
performance degradation for other reasons, such as lower cache hit rates. However,
if they are possible, then performance of the algorithm will often increase in any out-
of-order core. Application of these techniques can result in performance increases
of 50-150% on programs that were originally limited by speculative store-to-load
prediction thrashing.

Recommendation: Reduce Hard-to-Predict Store-to-Load Forwarding:

[Magnitude: High | Applicability: Medium] Avoid algorithms where loads
occasionally read recently written data. Consider restructuring data accesses
to increase the number of dynamic instructions between the write and the
subsequent read, so the read will find the data already written into the cache.
Alternatively, consider restructuring algorithms to avoid sporadic reads after
writes, potentially leveraging registers to communicate the data.

When multiple in-flight stores simultaneously forward bytes to a single load, the
predictor may be unable to properly enforce dependence ordering between loads and
individual stores. For instance, a string buffer may be written using sSTRB instructions and
subsequently loaded as a 16-byte aligned vector, instead. In these cases, the predictor
may force the load to wait until all older stores have issued instead of being dependent
on a specific store. Nevertheless, performance is still usually better than if the load
receive incorrect data, and the processor is forced to flush the pipeline and re-execute
the load. Because of the large instruction window, stores several hundred instructions
older than the load may not yet have written the cache when the load is read to execute.

Recommendation: Reduce Scenarios Where Multiple Smaller Stores
Simultaneously Forward to a Single Larger Load:

[Magnitude: Medium | Applicability: Medium] Minimize cases where memory
is accessed as two differently-sized data types, especially if those accesses may
occur within a several hundred instructions of each other.
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Table 4.25. Common Memory Dependence Metrics

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring

Events")

Memory Order Violation Density: Proportion retired stores that caused a pipeline flush

<Ev ST_MEMORY_ORDER_VIOLATION_NONSPEC> / and replay of loads and subsequent instructions of all
- - B - stores.

<Ev ST_UNIT_UOP>

4.6.10.1 Memory Dependence Prediction Example

Consider the following code example. The "Add AND assignment" operation (+=) on
autoc[coeff] performs aload of the existing value, adds to it, and stores out the new
value. As long as the value of d remains >= 0, the load will need the value from the
previous store. But, in some iterations when d < 0, coeff index will be incremented
such that the load will need the value from memory as opposed to the previous store.

void filter(float *autoc, float *data, uint32_t data_len, uint32_t lag)

{
float d;
uint32_t sample, coeff = 0;
const uint32_t limit = data_len - lag;

for(coeff = 0; coeff < lag; coeff++)
autoc[coeff] = 0.0;

for(sample = 0; sample <= limit; sample++) {
d = data[sample];
if (d < 0) {
coeff++;
if (coeff == lag)
break;

}

autoc[coeff] += d * data[sampletcoeff];

Knowledge of the data and algorithm may be useful when rewriting code to eliminate the
memory dependences. In this example, all updates to a particular autoc[coeff] happen
sequentially. The algorithm can be altered to load the initial value of autoc[coeff] into
a local variable sum, accumulate all updates into that local variable, then write out that
local variable into autoc[coeff] when the algorithm moves onto the next coeff. The
compiler is likely to register allocate the local variable sum eliminating the per-iteration
memory loads and stores altogether.

void filter opt(float *autoc, float *data, uint32_t data_len, uint32_t lag)
{

float d;

uint32_t sample, coeff = 0;

float sum = 0.0f;

const uint32_t limit = data_len - lag;
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4.6.11

for(coeff = 0; coeff < lag; coeff++)
autoc[coeff] = 0.0;

for(sample = 0; sample <= limit; sample++) {
d = data[sample];
if (d < 0) {

autoc[coeff] = sum;

coeff++;

sum = 0.0f;

if (coeff == lag)
break;

}

sum += d * data[sample+coeff];

}

if (coeff < lag)
{

autoc[coeff] = sum;

}

Store-to-Load Forwarding

When the processor predicts that a load will read data written all or in part by an older
store, the load will wait to execute until the data portion of the store is available. In such
cases, the load may read its data from internal buffers prior to the store actually writing
the cache. This is commonly referred to as Store-to-Load Forwarding. The P cores
feature an aggressive algorithm that allows loads to read data from multiple sources
generally without additional delay, including reading some bytes from various younger
stores (that have not yet written to the cache) and bytes from the cache itself.

While data alignment for store-to-load-forwarding isn't often a limiter, cache line

and page spanning loads may experience delays. (See Section 4.6.9, “Unaligned
Accesses”). Similarly, when multiple stores simultaneously feed a single load, the
dependence predictor may enforce conservative dependencies, requiring the store's
addresses to be known prior to forwarding. (See Section 4.6.10, “Memory Dependence
Prediction”).

In some instances, the processor may be able to further optimize Store-to-Load
Forwarding when resources are available:

* Single element 4B or 8B integer loads and stores only (without sign extension).

* Simple base + offset addressing only

Recommendation: Leverage Flexible Store-to-Load Forwarding When
Register Communication is Complex:

[Magnitude: Low | Applicability: Low] For algorithms with complex memory
access patterns, forwarding data via registers might require complex data
selection and shift/merge sequences. Rely on the aggressive store-to-load
forwarding network to complete such data movement. Further, rely on optimized
store-to-load forwarding of whole integer registers with simple addressing in
situations such as register spills/fills.
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4.6.12

4.6.121

4.6.12.2

Prefetching

For memory-intensive applications, prefetching data into the caches from main memory
prior to use can result in dramatic performance increases. To accommodate this, the
cores include mechanisms for both hardware-driven and software-driven prefetching.
This section gives a brief description of how to avoid pitfalls that might cause significant
performance problems.

Hardware Prefetcher

The hardware prefetcher is a unit attached to each core that analyzes the cache

misses generated by that core in an effort to find predictable streams of misses.

When its heuristic identifies a predictable stream, it attempts to launch main memory
accesses in advance in order to avoid future cache misses to the same stream of
references. In general, any large data structures accessed in a linear fashion should

be successfully prefetched, and even somewhat irregular patterns are also often quite
prefetchable. In general, it is successful on all but the most irregular and hard-to-predict
scenarios. Nevertheless, the hardware prefetcher does have a few limitations, such as
the maximum stride that can be detected successfully.

Benefits to relying on the hardware prefetcher:

* No developer intervention: This mechanism is automatic and does not require any
code modifications.

* Automatically tuned for each core: The hardware prefetching aggressiveness
is tuned for each core’s performance characteristic and each chip's latencies, so
that data arrives in the core just before it is used. In contrast, the count of
instructions between software prefetches and the subsequent demand accesses must
be manually tuned for each core to ensure that they are early enough, but not too
early. Because the performance cores usually require prefetching 4 to 30 lines ahead
to allow the data to arrive in time (depending on the specific software algorithm), this
can be quite difficult to tune manually. In contrast, the efficiency cores usually require
less aggressive prefetching. When the same code is executed on the efficiency cores,
the prefetcher's aggressiveness is retuned for those characteristics. Such adjustment
is not possible utilizing software prefetches.

* Reduced resource contention with loads and stores: Software prefetch
instructions occupy load units in the pipeline just like any other load. Reducing the
number of instructions that must go through those units can help avoid turning them
into a critical bottleneck. In contrast, the hardware prefetcher usually only inserts
prefetches into the load or store pipelines on spare idle cycles. Hardware prefetches
may sometimes still compete for memory system resources with demand accesses,
but the hardware prefetcher algorithm adjusts for that too. Software prefetches are
always mandatory and must execute even in the face of heavy memory system
contention. In contrast, hardware prefetches are always optional and can be dropped
if necessary.

Software Prefetch Instructions

The cores support the PRFM and PRFUM software prefetch instructions, which differ only
in their available selection of addressing modes. The former have the same addressing
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modes as LDR or STR, wWhile the latter handles modes available to LDUR or sTUR. These
prefetch instructions include prefetch options that include operation type {prefetch load,
prefetch store}, data destination {cache levels 1 or 2}, and temporal behavior {temporal,
non-temporal}. When using software prefetch instructions, issue only 1 instruction per
cacheline, striding the address based on the particular cache's line size. The address
specified within a particular cacheline does not matter.

Table 4.26. Recommended Software Prefetch Instructions

Instruction Operation Destination Temporal Behavior
PRF(U)M PLDL1KEEP|Load /Read L1D Cache Temporal
PRF(U)M PLDL1STRM Non-Temporal
PRF(U)M PLDLZKEEP Shared L2 Cache Temporal
PRF(U)M PLDL2STRM Non-Temporal
PRF(U)M PSTL1KEEP|Store / Write L1D Cache Temporal
PRF(U)M PSTL1STRM Non-Temporal
PRF(U)M PSTL2KEEP Shared L2 Cache Temporal
PRF(U)M PSTL2STRM Non-Temporal

Unlike normal memory accesses, these instructions cannot trigger exceptions (e.g.,
unmapped virtual to physical addresses, illegal page access request types, etc.). As

a result, software prefetch instructions may safely fetch past the ends of arrays and
access NULL pointers, without slowing down the system with spurious faults. Because
prefetch instructions often access data a few iterations ahead of the actual demand
accesses in the loop, preventing "bad" accesses would require extra range checks

and branches that would complicate and slow the loop. Unfortunately, this feature also
prevents prefetch instructions from triggering true page faults early; only actual demand
misses can force the core to handle page faults.

When the hardware prefetcher can successfully predict memory access patterns,
inclusion of software prefetch instructions may cause a decrease in performance
because the software prefetch instructions may inhibit the abilities of the hardware
prefetcher. The prefetch instructions don't trigger the hardware prefetcher themselves,
so their use can mask any natural miss patterns in the code that would normally trigger
the detection of hardware prefetchable patterns. In addition, the prefetch instructions
tie up resources within the cores, which may increase competition for critical pipeline
resources. In particular, they occupy decode slots, take up space in the reorder buffer,
and can compete with actual loads and stores for issue slots in the Load and Store Units.

Furthermore, you may find it difficult to properly place software prefetches into your
code. To be fully effective, software prefetches must launch memory requests a hundred
or more cycles ahead of the natural use in the code. Thus developers need to insert
software prefetch instructions potentially hundreds of dynamic instructions ahead of the
use. This distance is likely to increase on future faster processors.
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4.6.12.3

Recommendation: Sparingly Use Software Prefetch Instructions:

[Magnitude: Medium | Applicability: Low] Consider adding software prefetch
instructions to improve load and store latency, but only after analyzing data miss
patterns and exploring algorithmic improvements to better facilitate hardware
prefetching. Select the appropriate software prefetch instruction based on
expected demand operation type and temporal locality.

Before inserting software prefetches, evaluate cache performance using the metrics
listed in Table 4.19: "Common Data Cache Metrics". Identify loads and/or stores that
commonly miss and analyze the access patterns. The follow scenarios may warrant use
of software prefetching. After attempting insertion of software prefetches, it is best to
analyze performance both with and without the software prefetches to see whether

or not they are properly placed and verify that they provide an actual performance
improvement.

* Any access pattern: The biggest advantage for software prefetches is that they
can prefetch data using any memory access pattern, while the hardware prefetcher
is limited to a finite number of repetitive patterns. Hence, prefetching in complex
data structures such as trees is really only possible using software prefetching. That
being said, when accessing these sorts of data structures it is often too difficult
or sometimes even impossible to calculate the necessary addresses sufficiently
early. For example, pointer-chasing delays usually cannot be avoided by prefetching,
because the program doesn't know the addresses to prefetch in advance.

* Multiple streams too close together: The hardware prefetcher is designed to
detect streams while accounting for out-of-order execution of accesses. When
multiple separate streams are located close together, typically on the same page, and
are accessed simultaneously in an interleaved manner, the prefetcher may sometimes
identify them as a single irregular stream. The prefetcher may then initiate either
erratic prefetching or, in the worst case, no prefetching at all. For example, significant
performance degradation can occur when a single loop reads values from adjacent
rows in 2D data buffers (matrices, photos, and video frames, for example). The full
buffers in these scenarios are usually large enough to easily exceed the sizes of the
caches, so prefetching is important for good performance. However, rows of these
large buffers can still be short enough so that streams of accesses to two adjacent
rows of the buffer at once can be misinterpreted as a single irregular stream. There
are several ways to address this problem, so it is covered in more detail later in this
section.

« Large strides: Software prefetching can also help if large strides are needed,
typically those nearing the size of memory page or larger. Any stride larger than about
a memory page may potentially be missed and tracked as separate streams, instead.
For example, a loop accessing a large (i.e. thousands x thousands of elements) row-
major array in a column-wise manner will often read the array using strides that
greatly exceed the maximum stride that the hardware prefetcher can detect.

Prefetch Performance Tips

While rare, the most difficult-to-debug problems with the hardware prefetcher tend
to occur when software simultaneously accesses multiple streams that are too close
together in memory. To avoid these problems, don't mix two or more simultaneous
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streams of cache misses within the same memory page. Consider these transformations
to improve the ability of the hardware prefetcher to lock on to streams:

* Avoid adjacent rows: If possible, change the algorithm so that it does not need
to access adjacent rows of a 2D buffer simultaneously. For example, consider an
algorithm that operates row-by-row over a large 2D buffer. You might be tempted
to unroll the outer loop such that the algorithm operates on two rows (m and m+1)
simultaneously, exposing parallelism, like the following:

// Fused outer loop, loops over even/odd pairs of rows together
FOR (m = 0; m < M; m += 2) {
// Inner loop over columns of the buffer
// -- Cache misses on both rows m & m+l, interleaved
FOR (n = 0; n < N; n++) {
Compute row pair output elements (m,n) and (m+l,n)
// -- Can interleave instructions from both rows together now

Unfortunately, this loop accesses two rows of the 2D buffer simultaneously. If both
rows are located in the same memory page, the hardware prefetcher may be unable to
clearly identify the streams.

However, because the algorithm processes each row independently, pick two non-
adjacent rows to process simultaneously. For example, instead of adjacent rows,
interleave a row from the top half of the buffer (m) and a row from the bottom half

(m+(M/2)):

// Fused outer loop, loops over pairs of rows together
FOR (m = 0; m < M/2; m++) {
// Inner loop over columns of the buffer
// -- Cache misses on both rows m & m+M/2, interleaved
FOR (n = 0; n < N; n++) {
Compute row pair output elements (m,n) and (m+(M/2),n)
// -- Can interleave instructions from both rows together now

Simple changes like this can ensure that any two (or more) rows being read
simultaneously are always far apart instead of just a single row apart.

* Rearrange access patterns: The next possible solution is to rearrange the accesses
to memory so the cache misses all occur in a single stream that the hardware
prefetcher can easily understand. Instead of interleaving two streams in confusing
patterns like X, X+M, x+1, X+M+1, x+2, X+M+2, ... , for rows of length M, one can
instead rearrange the references into streams like X, x+1, X+2, ..., X+M-1, X+M,
X+M+1, X+M+2, ... . The simplest way to do this is to add a small “read ahead" loop
that triggers the cache misses ahead of time for all rows or all but the last row. Here is
a simple example for when two rows are read together that triggers the misses to the
first of the two rows early:

// Original outer loop, loops over even/odd pairs of rows
FOR (m = 0; m < M; m += 2) {
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// Added "read ahead" loop
FOR (n = 0; n < N; n += L1_CACHE_LINE_SIZE) {
Load at (m,n) to trigger cache misses from row m in correct order

}
// Original inner loop, loops over columns of the buffer
// -- Originally missed on both rows m & m+l, now just misses on m+l

FOR (n = 0; n < N; n++) {
Compute row pair output elements (m,n) and (m+l,n)

}

This small addition reorders all of the cache misses so they will occur in the “correct”
order and thereby generally present the hardware prefetcher with a single, simple
stream of misses. Depending upon the nature of the inner loop, it may sometimes be
better to load ahead for both rows m and m+1 in a read ahead loop like the following:

// Added "read ahead" loop
FOR (n = 0; n < 2*N; n += L1 CACHE LINE SIZE) {
Load at (m,n) to trigger cache misses from row m and then row m+l

}

After the processor executes the "read ahead" loop, the computation loop won't
generate any cache misses at all, because all of its data will have been fetched into
the cache by the “read ahead"” loop. Experiment with different solutions to see which
performs better in a given situation.

* Partial software prefetch: Typically, read ahead loops use normal "demand"
accesses which leverage all of the hardware prefetcher’s advantages, such as having
the prefetch aggressiveness automatically scaled properly for the underlying core.
However, read ahead loops using demand accesses may stall the processor waiting
for load data that will immediately be discarded. In select cases, use software prefetch
instructions in the "read ahead"” loop to avoid these stalls. In this case, the read ahead
loop looks slightly different:

// Added "read ahead" loop

FOR (n = 0; n < N; n += L1 CACHE LINE SIZE) {
PRFM at (m+2,n) to prefetch from row m+2

}

When coded with demand accesses, the read ahead loop accesses data used

in the subsequent loop iteration. The hardware prefetcher identifies the pattern

and prefetches out ahead, prefetching data for future iterations. However, software
prefetches do not train the hardware prefetcher. A read ahead loop consisting of
software prefetches must manually prefetch out ahead for future iterations. This can
be seen in the above code example where the PRFM instruction accesses (m+2, n).

This is because of a fundamental difference between hardware and software
prefetching. The hardware prefetcher spots patterns in a stream of accesses and
then automatically tries to get far enough ahead of them to avoid pipeline stalls,

but software prefetch instructions only initiate prefetches at the time that they are
executed. Because they do not attempt to “look ahead” in any way, code that uses
software prefetches must always manually insert them far enough in advance so that
any needed cache misses can complete before the eventual demand loads occur. In
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this case, one must prefetch for the computation loop of the next outer loop iteration
instead of the one that will execute immediately after this “read ahead" loop in order
to provide enough lookahead.

While using software prefetch to access the "even” (m) rows, this hybrid scheme
continues to access the “odd"” (m+1) rows using standard demand misses during
the computation loop. As a result, the code is actually still reliant on the hardware
prefetcher, but it now only has to deal with prefetching a single stream of references
(for row m+1) during each inner loop and hence should work much better.

* All software prefetch: The final step is to just software prefetch everything
and remove the hardware prefetcher from the equation altogether. This can be
accomplished with a straightforward variation on the last read ahead loop:

// Added "read ahead" loop

FOR (n = 0; n < N; n += L1 CACHE LINE SIZE) {
PRFM at (m+2,n) to prefetch from row m+2
PRFM at (m+3,n) to prefetch from row m+3

Much like the second read ahead loop variation from the “rearrange access patterns”
case, this runs ahead and fetches two rows at once. Unlike that scenario, however,
one can fetch the two rows using an interleaved access pattern. Because the code
now bypasses the hardware prefetcher entirely, there is no reason to keep the
accesses laid out in a strictly linear fashion. (It may still be a good idea to use the
linear access pattern from the “rearrange access patterns” case, because it may
improve DRAM performance. However, it is not necessary to guide prefetching, so this
alternate code works too.) In fact, it may even be desirable to fuse the “read ahead”
loop and the computation loop together so that the software prefetches are fed into
the Load and Store Units gradually over the course of the inner loop instead of in a big
chunk at between inner loops, more like the following:

// Original outer loop, loops over even/odd pairs of rows
FOR (m = 0; m < M; m += 2) {
// Fused read ahead+inner loops, loops over columns of the buffer // --
Compute rows m & m+l + prefetch rows m+2 & m+3
FOR (ns = 0; ns < N; ns += L1_CACHE _LINE SIZE) {
// Read ahead section
PRFM at (m+2,ns) to prefetch from row m+2
PRFM at (m+3,ns) to prefetch from row m+3
// Compute section
FOR (n = ns; n < ns + L1 CACHE LINE SIZE; n++) {
Compute row pair output elements (m,n) and (m+l,n)

}

This kind of pattern can be continued to prefetch even farther ahead, but be careful
not to prefetch ahead so far that the data starts falling out of the L1D Cache before
it can be used by the compute loop. If L1D Cache capacity is a problem, then it
would probably be better to go back to one of the solutions that uses the hardware
prefetcher. Finally, note that it is not possible to fuse the read ahead loop like this
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unless the read ahead loop is only using software prefetches, because otherwise the
code will still have multiple load streams and lead to prefetcher confusion.

Few algorithms access multiple rows of 2D buffers at once in ways that will cause cache
misses on multiple rows at once like this, but for those that do these techniques can
result in very large performance improvements.

Last, neither software nor hardware prefetching is likely to improve the performance of
pointer chasing code. That is, it is hard to predict the need for cachelines far enough

in advance for algorithms that predominantly hop from one linked node to the next

with minimal additional computation. Many of these data structures feature dynamically
allocated nodes, for which the allocation and link ordering form no discernible memory
address pattern. Performance improvement may still be possible through intelligent
ordering of structure fields to minimize the number of cachelines that are needed

for typical access to a node. Specifically, put the key node data items and "next"
pointer into a single cacheline. See the discussion on "hot/cold" fields and variables

in Section 4.6.3, "L1 Data (L1D) Cache".

Recommendation: Recode Algorithms to Simplify Access Patterns to Aid
the Hardware Prefetcher:

[Magnitude: Medium | Applicability: Medium] While software prefetch
instructions may be able to prefetch complex patterns, it is often difficult

to insert them far enough ahead, but not too far ahead, of the demand

use. The hardware prefetcher, however, dynamically adjusts according to the
circumstances. Before attempting to insert software prefetches, identify regions
of high cache miss behavior, and explore pattern simplifications that may allow
the hardware prefetcher to identify and prefetch the stream.
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5.1

As mentioned in the introduction, Apple silicon chips feature two types of general-
purpose CPU cores, performance cores (P cores) and efficiency cores (E cores). Both
types of cores use the same instruction set architecture and coherently access the same
memory, so threads may freely move back-and-forth between the two types of cores.
The E cores are physically smaller cores with shorter wires and smaller transistors, but
are based on a similar microarchitecture as the P cores, thus workloads optimized for
one are expected to perform well on the other. Having both types allows the system

to optimize for performance when performance is a priority, and optimize for efficiency
(for example, improving battery life) when it isn't. Because E cores offer compelling
high performance on their own, certain tasks may perform sufficiently well on the E
cores which can free up P cores for other more demanding tasks. Lastly, E cores can
be used in multithreaded workloads along with the P cores to add significant additional
performance.

Optimizing multithreaded applications requires careful consideration. In addition to the
discussion below, see Tuning Your Code's Performance for Apple Silicon and Addressing
Architectural Differences in Your macOS Code on the Apple developer website.

To programmatically determine the CPU and chip configurations, see Appendix B,
Dynamic Determination of Chip-Specific Capabilities.

Prioritizing Work

Developers can prioritize work by providing hints to the system as to which work items
are the most performance-critical, and hence should be favored for execution on the P
cores, using the quality of service (QoS) flags. Likewise, developers can indicate which
work items are less performance-critical (“background”) and thus should be favored for
execution on the E cores. Nevertheless, the system may execute performance-critical
threads on E cores when there are more such threads than available P cores. Especially
when the desired performance level is unspecified, the system monitors applications
dynamically and automatically prioritizes CPU-intensive threads for the P cores for
maximum performance. Similarly, to save power, the system may assign less CPU-
intensive threads to the E cores. Documentation on the use of the QoS classes can

be found on the Prioritize Work at the Task Level page of the Energy Efficiency Guide for
Mac Apps guide.

Recommendation: Use Quality of Service (QoS) APIs to Prioritize Work:

[Magnitude: Medium | Applicability: Low] Software cannot directly control
the type of core on which any task executes. However, use Quality of Service
classes to provide hints to the system.
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5.2

5.21

Partitioning Work

When developing applications with large numbers of worker threads that all need
maximum performance, consider the implications of asymmetric multiprocessing. At a
high level, there are two general approaches used by developers to divide up work on
symmetric MP systems, but only one works well on an asymmetric system:

* Static Partitioning: The partitioning algorithm divides up work into pre-determined,
equal-sized chunks. Software assigns each worker thread a particular set of chunks
to complete. Synchronization techniques such as barriers occasionally synchronize all
threads, potentially after a phase of execution. While this works well in a symmetric
multi-processor system it often doesn't work well in an asymmetric system because
the underlying assumption doesn't apply: in a symmetric system, software can divide
a task into in equal size chunks because the underlying processing elements are all
equally capable. But this is not the case in an asymmetric system.

* Dynamic Partitioning: The partitioning algorithm divides up work into tasks,
potentially of various sizes, stashing them in a task queue. Each worker thread
retrieves a new task from the queue when it finishes the previous task. While
this strategy may incur slightly higher task-management overhead, the benefits of
dynamically assigning chunks of the work to available threads typically allows the
work to be completed faster.

Section 5.2.1, "Avoid Static Partitioning” describes some of the pitfalls associated
with static partitioning, while Section 5.2.2, “Use Dynamic Partitioning” describes the
benefits of dynamic partitioning.

Avoid Static Partitioning

Static partitioning can lead to longer latency execution on asymmetric MP systems.
While these equal-sized chunks may all complete in about the same amount of time on
a symmetric MP system, asymmetric cores will execute them at different speeds and
thereby introduce dynamic load imbalance. Some threads will end up running faster (on
P cores) and some slower (on E cores), sometimes switching cores in the middle of
execution, usually in a manner that the program itself cannot control.

Because of the asymmetry, threads running primarily on P cores will make more
progress than those running primarily on E cores. While the system will likely move
those primarily E core threads to the P cores when P cores become available (through
rebalancing), those primarily E core threads may already be behind. Note that OS will
often rotate threads amongst the P and E cores to load balance when running for
multiple OS time quanta.

Similarly, static partitioning strategies tend to assume that little or no other time-
consuming tasks are running on the system, and that the static partitioning algorithm
can statically and evenly partition work across all of the compute resources. When
other unrelated tasks are running on a core, a static slice of the MP application may
be delayed, which will delay the overall application in the same manner as static slice
running on a slower core. Therefore, even on symmetric multiprocessors, dynamic
partitioning is often a better strategy.

If static thread scheduling is the only viable option, use sysctl queries to determine the
core count. See Appendix B, Dynamic Determination of Chip-Specific Capabilities.
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5.2.2

Use Dynamic Partitioning

Dynamic partitioning is a better approach that static partitioning in most cases. Threads
that happen to be assigned to P cores will naturally complete work more quickly, taking
a larger number of parallel tasks from the task queue, while threads assigned to E cores
will churn through a smaller number of tasks more slowly. As threads move around the
cores, they will naturally adapt and start picking up more tasks when they are running on
the faster P cores or fewer when they happen to be assigned to the slower E cores.

To use all the available computing power of all the cores in the system, applications
typically need to spawn a number of worker threads equal to the number of available
cores (e.g. 8 for the M1's 4 P cores + 4 E cores). Use sysct1 for determining the number
of cores in the system (see Appendix B, Dynamic Determination of Chip-Specific
Capabilities). As a broad guideline, divide work into as many discrete tasks as possible,
at least 3x the number of cores and preferably more. Of course, when work items

are too small, work-queue management overhead can begin to dominate the actual
work, in terms of both instruction count and queue memory contention. Work-queue
management overhead also increases with additional cores due to communication
latency and contention, so consider the range of chips your code may run on, from

an A14 Bionic chip with 2 P cores and 4 E cores to an M2 Ultra chip with 16 P cores

and 8 E cores. Last, single-threaded CPU performance tends to increase faster than
multi-threaded work-queue management performance from generation to generation,
so work items that are the proper size in one generation may be too small in a future
generation. Because work-queue management itself has a direct impact on scaling
performance, keep this code as short and efficient as possible. Finding the proper work
item size requires experimentation and tuning.

Consider the illustrative example Figure 5.1: “Partitioning Strategies: An lllustrative
Example” for a 2 P core + 2 E core chip where the P cores are roughly double the
performance on the particular workload. A static partitioning into 4 threads and using
all 4 cores (b) is faster than using just 2 threads prioritized to run on the 2 P cores

(a). Dividing the work into smaller chunks and allowing threads to dynamically select
tasks from a common work pool (c) can achieve better utilization of all the cores

and the shortest runtime. However, further reducing chunk size (d) results in worse
performance because of increased management overhead (depicted as more gaps
between work items) and contention on the work queue (depicted as larger gaps). The
core count, relative performance, and workload management overheads in this example
illustrate the concepts and don't prescribe a particular workload partition size. The
aforementioned 3x partitions compared with available cores is a good starting point, but
experimentation and tuning is required. If execution completion is delayed by a small
number of straggler threads (threads that continue running long after the others have
completed), finer-grained work partitioning may help.
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Figure 5.1. Partitioning Strategies: An lllustrative Example
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As illustrated in Figure 5.1: "Partitioning Strategies: An lllustrative Example”, a dynamic
work partitioning strategy will most often lead to the best performance because of its
flexible work assignment. Threads synchronized using static techniques like barriers
will not work well when some cores can execute code significantly faster than others.
Management of multiprocessing at a low level can be accomplished through C++
threads or pthreads. These allow for direct creation and control of multiple POSIX-
compatible threads managed by the application, usually with at least one thread per
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5.3

5.4

available core. Distribute work amongst these threads by building dynamic task queues
on top of these APIs using basic primitives such as locks and condition variables.
However, because this code is complex and often requires extensive tuning, consider

a pre-built task management API like Grand Central Dispatch. This framework provides
mechanisms to manage and synchronize large numbers of concurrent parallel tasks and
automatically handles low-level thread management.

Recommendation: Use Grand Central Dispatch for Dynamic Work and
Thread Management:

[Magnitude: Medium | Applicability: Low] Avoid static work partitioning
techniques that assign equal portions of the work to each thread, with one
thread per core. Instead, divide the work into more (smaller) pieces, 3x the
number of cores as a starting point. Use dynamic techniques that allow faster
threads to pull more work from a shared work queue. Consider using Grand
Central Dispatch which is tuned for each platform to offer the best performance
and fairness. C++ threads and pthreads are also available as cross-platform
alternatives.

Avoid Spin-Wait

Regardless of work partitioning strategy, avoid keeping threads active but effectively idle
in spin-wait loops. In the rare circumstance the spin-wait is known to be short lived,
where the wait time is on the same order as the thread scheduling overhead, spin-wait
may be a workable choice. However, most wait times are unknown and often longer

than the scheduling overhead. By occupying cores, especially P cores, with spin-wait
loops, work that might have fallen behind on E cores may be forced by the system to
continue on the E cores. Likewise, the system often has other unrelated work to perform.
Spin-waiting prevents the system from using that effectively idle time for other system
work, and may force a context switch of application work at less optimal times. See
"Don't Keep Threads Active and Idle" at Tuning Your Code's Performance for Apple
Silicon. -

Recommendation: Block Threads When Idle and Avoid Spin-Wait Loops:

[Magnitude: Medium | Applicability: Low] When the wait is expected to be
very short, on par with the cost of a thread switch, use spin-wait loops to cause
a thread to wait for next stage. In all other cases, block the thread such that the
operating system can schedule other work on the core.

APIs for Synchronization and Thread Communication

Experienced MP developers may be tempted to try to achieve maximum performance
by building their own primitives (e.g. spin locks) from scratch using Arm ISA Load/Store
exclusive or atomic instructions. However, these primitives require complex algorithms
(e.g., queued locks) to ensure fairness between all threads, avoiding bias (or even
monopolization) to cores within a cluster. Also, topologies, protocols, and latencies are
likely to change between generations and even between different products within a
particular generation. Custom synchronization primitives tuned for one product may not
function well in another.

Copyright © 2024 Apple Inc. | 2024-03-21
147


https://developer.apple.com/documentation/dispatch
https://developer.apple.com/documentation/os/workgroups/tuning_your_code_s_performance_for_apple_silicon
https://developer.apple.com/documentation/os/workgroups/tuning_your_code_s_performance_for_apple_silicon

Apple Silicon CPU Optimization Guide
Asymmetric Multiprocessor (AMP) Optimization Thread Communication Tradeoffs

Before attempting to write your own primitives, try APIs that are specific for Apple
languages or cross-platform APIs to ensure reliably good performance. These APIs are
tuned for each generation and product to account for topology, protocol, and latency
changes.

The section "Synchronize Access to Shared Data in Memory" in Addressing
Architectural Differences in Your macOS Code offers various API options summarized
here:

* Grand Central Dispatch (GCD) provides serial queues and other ways to synchronize
tasks.

* The @synchronized directive creates a mutex lock for Objective-C code.

* The Foundation framework defines standard mutexes, conditions, and other types of
locks.

* The os framework provides “unfair” locks for synchronization.
* The pthreads library defines standard mutexes and condition variables.

* The C11/C++11 primitives in stdatomic.h support custom memory ordering in atomic
operations.

Recommendation: Use Tuned APIs for Synchronization Primitives:

[Magnitude: Medium | Applicability: Low] Use APIs specific to Apple
languages or cross-platform APIs for high performance thread synchronization.
These libraries are tuned for the specific platform to offer the best performance
and fairness.

Use the following metrics to measure atomic and exclusive instruction rates, as well
as success and fail percentages. For exclusive instructions, such as LDREX/STREX, the
events count depending on whether the processor was able to maintain exclusive
access of the cache line between the load and the store. For compare-and-swap
instructions, such as cas, the events count depending on whether the compare
condition was met.

Table 5.1. Common Atomic and Exclusive Metrics

Name and Formula Description

(Event Definitions: Section 6.2, “Performance Monitoring

Events")

Atomic/Exclusive Success Density: Proportion atomic and exclusive instructions that

<Ev ATOMIC_OR_EXCLUSIVE_SUCC> / <Ev INST_ALL> succeed of all retired instructions

Atomic/Exclusive Fail Density: Proportion atomic and exclusive instructions that fail

<Ev ATOMIC_OR_EXCLUSIVE_FAIL> / <Ev INST_ALL> of all retired instructions

5.5 Thread Communication Tradeoffs

Communication latencies are asymmetric between various cores in the system. Data
written by one core and read by another in the same cluster is fast via the Shared L2
Cache. If a multithreaded application has a thread count equal to or smaller than the
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number of cores in a cluster, the system will try to keep the threads together on the
same cluster. Thus, the threads will tend to share data using the faster paths through the
Shared L2 Cache.

Sharing of data between clusters must pass through the slower inter-cluster
communication network (the fabric). This significantly increases the latency of

the communication by roughly an order-of-magnitude compared with intra-cluster
communications. Applications with more threads than the number of cores available

in a single cluster will almost inevitably encounter these longer communication latencies.
The system will keep as many of the threads active as possible, likely employing cores

in multiple clusters at least part of the time. If each of the threads in an application deals
with a more-or-less independent pool of data, these longer latencies are typically not an
issue. But any applications where worker threads regularly communicate and share large
amounts data can require careful tuning to minimize the effect of varying communication
latencies.

See Section A.3.5, "Memory Hierarchy Access Latencies” for typical best case latencies.

When managing shared data such as a work queue, semaphore, or atomic counter, a
core will snoop the cache line away from other cores to perform the read-modify-write
operation. In some code sequences, the thread may first read the status of the queue or
semaphore non-atomically prior to the read-modify-write operation causing additional
traffic. Other custom sequences may cause additional traffic that is not optimal for
Apple silicon. Where possible, use the platform’s tuned APIs (see Section 5.4, "APIs for
Synchronization and Thread Communication”) to efficiently access shared structures.
And, increase work element size to reduce the frequency of multiple threads accessing
the shared structures simultaneously. Tuning may be required to limit contention of
shared structures by employing sufficiently large work items, while avoiding imbalance
due to excessively large work items.

Even with efficient accesses, contention may arise between threads particularly when
work items are necessarily small. A symptom of this issue may be that multi-threaded
performance does not scale with additional threads up to the available core count.
Consider sharding shared structures, that is, partitioning work into several work
queues, semaphore-protected data sets, or atomic counters to reduce contention.
Sharding atomic counters is generally straightforward and only requires accumulating
the separate counts at the end. Sharding other structures comes with the risk of
imbalance that may lead to overall worse performance, such as when one queue
dedicated to a subset of the threads takes much longer to complete than another queue.
Job stealing or rebalancing algorithms may be needed, adding to the overall complexity.
If needed, create shards associated with individual or groups of threads. In very rare
occasions, such as when the thread count must be much larger than the core count,

it may be appropriate to create shards associated with individual or groups of cores

to limit the amount of memory consumed. Use int pthread cpu number np(size t
*cpu_number out) to determine the current Core ID and access the appropriate shard.
Note that the OS may move a particular thread to a different core at any time, and
therefore this is a mostly-correct heuristic for using the appropriate shard. Significant
tuning and advanced algorithms will be required to ensure shards improve overall
performance while limiting worst-case slowdowns. Use sharding, in particular core-
based sharding, cautiously and sparingly.

Copyright © 2024 Apple Inc. | 2024-03-21
149



Apple Silicon CPU Optimization Guide
Asymmetric Multiprocessor (AMP) Optimization Xcode Sanitizer Tools

Last, avoid false sharing, where two or more independent variables occupy the same
128B cacheline. This organization may lead to thrashing of the cacheline between cores.
See Section 4.6.6, “Improving Cache Hierarchy Performance”.

Recommendation: Minimize Data Sharing When Increasing Thread
Counts:

[Magnitude: Medium | Applicability: Low] Sharing modified data between
cores in a cluster is relatively fast due to the Shared L2 Cache. When expanding
a workload beyond the number of threads found in a single cluster, consider how
much data is written by one core and consumed by another. Excessive sharing
may lead to lower-than-expected performance especially with increased thread
counts. Reduce the amount of data shared where possible, either algorithmically
or via increased data packing within cachelines without introducing false sharing.

5.6 Xcode Sanitizer Tools

Xcode offers a number of tools to aid in multithreaded code development. The Thread
Sanitizer tool inserts diagnostics into the code to record each memory read or write
operation. These diagnostics generate a timestamp for each operation, as well as its
location in memory. The tool then reports any operations that occur at the same location
at approximately the same time. The tool also detects other thread-related bugs, such
as uninitialized mutexes and thread leaks.

Recommendation: Use Thread Sanitizer and Other Xcode Tools to Aid
Multithreaded Code Development:

[Magnitude: Medium | Applicability: Low] Correct multithreaded applications
require the developer to pay careful attention to synchronization, data ordering,
and leaks. Use available tools to verify correctness.
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Chapter 6. Performance Monitoring

6.1

6.2

Xcode Instruments Tool

Xcode features an Integrated Development Environment (IDE) tool called Instruments.
This tool can help you profile your apps in order to better understand and optimize their
behavior and performance.

For more information on how to use Instruments, see Getting Started with Instruments
(WWDC2019 Video).

Performance Monitoring Events

Event names are denoted <EV event_name> where the event_name follow this
convention:

* INST_*: ISA instruction type profiling event. These events count when a matching
instruction retires. By definition, these are non-speculative.

* * NONSPEC: Non-speculative microarchitectural event. These events count when an
instruction that caused or experienced the microarchitectural event retires.

* (other): Microarchitectural events. These events count when the event occurs. The
observed PC at the time of the associated counter increment is not necessarily
indicative of an instruction that caused or experienced the event. Often referred to
as "speculative" since they count before it is known whether the related instructions
retire or are cleared due to a misprediction.

Event Name Brief Description

ATOMIC_OR_EXCLUSIVE_FAIL Atomic or exclusive instruction failed (due to contention)

ATOMIC_OR_EXCLUSIVE_SUCC Atomic or exclusive instruction successfully completed

BRANCH_CALL_INDIR_MISPRED_NONSPEC Retired indirect call instructions mispredicted

BRANCH_COND_MISPRED_NONSPEC Retired conditional branch instructions that mispredicted

BRANCH_INDIR_MISPRED_NONSPEC Retired indirect branch instructions including calls and
returns that mispredicted

BRANCH_MISPRED_NONSPEC Retired branch instructions including calls and returns that

mispredicted

BRANCH_RET_INDIR_MISPRED_NONSPEC Retired return instructions that mispredicted

CORE_ACTIVE_CYCLE Cycles while the core was active

FETCH_RESTART Fetch Unit internal restarts for any reason. Does not include
branch mispredicts

FLUSH_RESTART_OTHER_NONSPEC Pipeline flush and restarts that were not due to branch
mispredictions or memory order violations

INST_ALL All retired instructions

INST_BARRIER Retired barrier instructions

INST_BRANCH Retired branch instructions including calls and returns
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Performance Monitoring Events

Event Name

Brief Description

INST_BRANCH_CALL

Retired subroutine call instructions

INST_BRANCH_INDIR

Retired indirect branch instructions including indirect calls

INST_BRANCH_RET

Retired subroutine return instructions

INST_BRANCH_TAKEN

Retired taken branch instructions

INST_INT_ALU Retired non-branch and non-load/store Integer Unit
instructions

INST_INT_LD Retired load Integer Unit instructions

INST_INT_ST Retired store Integer Unit instructions

INST_LDST Retired load and store instructions

INST_SIMD_ALU Retired non-load/store Advanced SIMD and FP Unit

instructions

INST_SIMD_ALU_VECTOR

Retired non-load/store Advanced SIMD instructions
(including integer and floating point data types)

Note: Available on M2 Generation and following, and A15
Bionic and following

INST_SIMD_LD

Retired load Advanced SIMD and FP Unit instructions

INST_SIMD_ST

Retired store Advanced SIMD and FP Unit instructions

INTERRUPT_PENDING

Cycles while an interrupt was pending because it was
masked

L1D_CACHE_MISS_LD

Loads that missed the L1 Data Cache

L1D_CACHE_MISS_LD_NONSPEC

Retired loads that missed in the L1 Data Cache

L1D_CACHE_MISS_ST

Stores that missed the L1 Data Cache

L1D_CACHE_MISS_ST_NONSPEC

Retired stores that missed in the L1 Data Cache

L1D_CACHE_WRITEBACK

Dirty cache lines written back from the L1D Cache toward
the Shared L2 Cache

L1D_TLB_ACCESS

Load and store accesses to the L1 Data TLB

L1D_TLB_FILL

Translations filled into the L1 Data TLB

L1D_TLB_MISS

Load and store accesses that missed the L1 Data TLB

L1D_TLB_MISS_NONSPEC

Retired loads and stores that missed in the L1 Data TLB

L1_CACHE_MISS_DEMAND

Demand instruction fetches that missed in the L1
Instruction Cache

L1_TLB_FILL

Translations filled into the L1 Instruction TLB

L1_TLB_MISS_DEMAND

Demand instruction fetches that missed in the L1
Instruction TLB

L2_TLB_MISS_DATA

Loads and stores that missed in the L2 TLB

L2_TLB_MISS_INSTRUCTION

Instruction fetches that missed in the L2 TLB

LD_UNIT_UOP

Uops that flowed through the Load Unit

LD_NT_UOP

Load uops that executed with non-temporal hint

LDST_X64_UOP

Load and store uops that crossed a 64B boundary

LDST_XPG_UOP

Load and store uops that crossed a 16KiB page boundary

MAP_DISPATCH_BUBBLE

Cycles while the Map Unit was not stalled and Decode Unit
did not send any uops

MAP_INT_UOP

Mapped Integer Unit uops
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Event Name

Brief Description

MAP_LDST_UOP

Mapped Load and Store Unit uops, including GPR to vector
register converts

MAP_REWIND Cycles while rewinding the Map Unit due to flush and
restart

MAP_SIMD_UOP Mapped Advanced SIMD and FP Unit uops

MAP_STALL Cycles while the Map Unit was stalled for any reason

MAP_STALL_DISPATCH

Cycles while the Map Unit was stalled because of Dispatch
back pressure

MMU_TABLE_WALK_DATA

Table walk memory requests on behalf of data accesses

MMU_TABLE_WALK_INSTRUCTION

Table walk memory requests on behalf of instruction
fetches

RETIRE_UOP

All retired uops

SCHEDULE_UOP

Uops issued by the scheduler to any execution unit

ST_MEMORY_ORDER_VIOLATION_NONSPEC

Retired stores that triggered memory order violations

ST_NT_UOP

Store uops that executed with non-temporal hint

ST_UNIT_UOP

Uops that flowed through the Store Unit
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Appendix A. Instruction Latency and
Bandwidth

A1

The details covered in Chapter 4, Core Microarchitecture Optimization and Appendix A,
Instruction Latency and Bandwidth represent the most important information to
consider when optimizing software. The CPUs employ additional techniques beyond
what is described here that may reduce the latency of an instruction sequence. Similarly
the CPU may have other internal resource or datapath limitations that may increase
latency under certain less common conditions. These may change from generation to
generation, and it may be difficult or counter-productive to try to transform software

to match the conditions. This appendix describes the foundational latency for the
operations from which code sequences should be developed.

Operations are divided into three categories, Integer, ASIMD&FP, and Load&Store.
Instructions often map directly to single pops, thus instruction mnemonics mentioned
serve as proxies for the relevant pops.

For each category, the Operation Class table presents descriptions with latencies and
instruction mnemonics. The list of example mnemonics is hot necessarily exhaustive.
Use the descriptions and examples to determine the Operation Class for instructions of
interest. Operation Class table contents apply to both P cores and E cores, except where
noted. The Operation Latency column provides the primary latency of the operation,

and may be differentiated between P cores and E cores. Latencies inside [x] provide

an alternate latency typically through a specific operand or a special condition, and are
described in the Operation Types and Descriptions column.

Note that operation latencies describe the number of cycles required to complete
execution of the operation. In the best case, consumer operations will begin execution
immediately after producer operations complete. However, there are numerous reasons
consumer operations may be delayed, including but not limited to:

* Consumer operation entering the instruction window
* Other input operands

* Unavailable internal microarchitectural resources

* Limited datapath bypassing/forwarding paths

Operation Class Availability tables provide the mapping of operation classes to
execution units for the P and E cores to describe operation bandwidth and concurrence.

Integer Execution Units

Integer operations are divided into classes, as described in Table A.1: “Integer Execution
Classes”.

Note that the Load and Store Execution Unit handles movement of data from general
purpose registers to ASIMD&FP (vector) registers. See Section 4.5.1, “Movement of
Data from General Purpose Registers to Vector Registers”.
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Table A.1. Integer Execution Classes

Class

Latency

Operation Types and Descriptions (Example Instruction Mnemonics)

ALU

12]

General purpose register and immediate value to general purpose register moves
(MOVK, MOVN, MOVZ, ORR (with XZR))

Arithmetic and logic operations that do not read or write flags (ADD, ADR, ADRP,
AND, BIC, EON, EOR, ORR, ORN, SUB). Note: Multiplies and Divides are in separate
classes.

Shift and bitfield operations (ASRV, CLS, CLZ, EXTR, LSLV, LSRV, RBIT, REV,
REV16, REV32, RORV, SBFM, UBFM) Note: BFM is not included in this class.

Extract register from a pair of registers (EXTR). Note in cases where the two input
registers are different, the instruction requires an additional single-cycle MISC-class
pop.

Writeback portion of pre-index and post-index memory addressing modes

Operation portion of LD-op and ST-op instructions, including all flavors of acquire
and release. See Table A.11.

[2]: Non-moves that operate on a shifted or extended register operand occupy the
unit for 2 cycles (depipelined).

ALUf
(ALU/f)

1[2]

Arithmetic and logic operations that consume or produce flags (ADC, ADCS, ADDS,
ANDS, AXFLAG, BICS, CCMN, CCMP, CFINV, CMN, CMP, CSEL, CSINC, CSINV,
CSNEG, RMIF, SBC, SBCS, SETF8, SETF16, SUBS, TST, XAFLAG)

[2]: Operations that operate on a shifted or extended register operand occupy the
unit for 2 cycles (depipelined).

ALU/f: Notation for combined ALU + ALUf unit

BRud

Unconditional direct branches (B, BL)

Note: These instructions do not require an execution unit and thus do not appear in
the availability tables.

BRc

Conditional branches (B.cond, CBZ, CBNZ, TBZ, TBNZ)

BRi
(BRc/i)

Indirect branches, including returns and indirect calls (BLR, BR, RET)
BRc/i: Notation for combined BRc + BRi unit

MAC

3[1]

Multiply-accumulate (aka Multiply-add/sub) operations (MADD, MSUB, SMADDL,
SMSUBL, UMADDL, UMSUBL).

[1]: The accumulator input of these instructions has a latency of 1 cycle if it comes
directly from the output of a previous multiply-accumulate instruction.

MUL

Multiplies without additional add/sub operation (MUL, MNEG, UMNEGL, SMNEGL,
SMULL, SMULH, UMNEGL, UMULH, UMULL)

DIV

Various

Divides (SDIV, UDIV)

P core: 32b: 7-8 cycles, 64b: 7-9 cycles. A new divide can be issued every other
cycle.

E core: 32b: 7-13 cycles, 64b: 7-21 cycles. A new divide can be issued only once
the previous divide is complete.

MISC

Bitfield insert with merge (BFM)

CRC calculation (CRC32%*)

Copyright © 2024 Apple Inc. | 2024-03-21
155



Apple Silicon CPU Optimization Guide

Instruction Latency and Bandwidth

A.2

Table A.2. Integer Execution Class Availability: P Core

Chip Integer Execution Unit
o 1 2 3 4 5 6 7
M1 Generation ALU/f  |ALU/f  |ALU/f  |ALU ALU ALU
M2 Generation BRc/i BRc MUL MUL
A14 Bionic MAC |DIV
A15 Bionic MISC
A16 Bionic
M3 Generation ALU/f  |ALU/f  |ALU/f  |ALU/f  |ALU ALU ALU ALU
BRc/i |BRc MUL MUL
MAC DIV
MISC

Table A.3. Integer Execution Class
Availability: E Core

Chip Integer Execution Unit
(0] 1 2 3

M1 Generation ALU/f  |ALU/f  |ALU/F
A14 Bionic MUL BRi BRc

MAC |DIV

MISC
M2 Generation ALU/f  |ALU/f  |ALU/f  |ALU/E
M3 Generation MUL BRi BRc
A15 Bionic MAC |DIV
A16 Bionic MISC

The following instructions serialize the instruction delivery pipeline according to their
conditions: ISB, SB.

Advanced SIMD and FP Execution Units

ASIMD&FP operations are divided into classes, as described in Table A.4: "ASIMD&FP
Execution Classes”. The ASIMD&FP execution units feature floating-point scalar and
SIMD types as well as integer SIMD types. Integer type instructions in this section are
not the same as integer registers and execution units described in the previous section.

As noted in Section 2.6, "Registers”, The ASIMD&FP registers and related instructions

are often simply referred to as "Vector" registers and instructions. In the context of this
document, the term vector doesn't imply only SIMD operations, but does include scalar
floating-point operations which use the same registers and datapath.

Note that the Load and Store Execution Unit handles movement of data from general
purpose registers to ASIMD&FP (vector) registers. See Section 4.5.1, “Movement of
Data from General Purpose Registers to Vector Registers”.
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Table A.4. ASIMD&FP Execution Classes

Class Latency |Operation Types and Descriptions (Example Instruction Mnemonics)
GENERAL |2-8 Wide range of arithmetic, logic, shift, vector-vector moves, and multiplies or both
integer and floating point types. See Table A.5: “GENERAL ASIMD&FP Class
Details" for further breakdown.
MOVE2GP |P: 3-4 Vector to general purpose registers moves (FMOV, SMOV, UMOV)
R E:3 Move portion of vector to general purpose register converts (FCVT (AMNPZ )
(sU))
P core: S, D, and D[ 1] subsets of FMOV and FCVT* have a latency of 3 cycles.
Others are 4 cycles.
FCMPf P: 5[9] Flag producing FP comparison operations (FCCMP, FCCMPE, FCMP, FCMPE)
E: 4[8] [9/8]: Latency through the input condition flags is +4 cycles for FCCMP *
FCSELf 2[6] Flag consuming FP select operations (FCSEL)
[6]: Latency through the input condition flags is 6 cycles for FCSEL
FDIV Various |Divides (FDIV):
P core: 1 per cycle, 7 cycles for H sizes, 8 cycles for S sizes, 10 cycles for D sizes
E core: Same as P core, but for 128b vectors: 1 per 2 cycles with +1 cycle latency
Square roots (FSQRT):
P core: 1 per 2 cycles, 8 cycles for H sizes, 10 cycles for S sizes, 13 cycles for D
sizes
E core: Same as P core, but for 128b vectors: 1 per 4 cycles with +2 cycle latency
Reciprocal / reciprocal square root estimates (FRECPE, FRECPX, FRSQRTE,
URECPE, URSQRTE):
P core: 3 cycles
E core: 4 cycles
Note that reciprocal / reciprocal square root steps (FRECPS, FRSQRTS) are
multiply operations covered in the GENERAL class
SHA 2-5 SHA1, SHA2-256, SHA2-512 Cryptography

2 cycle: SHA1H, SHA1SUO, SHA1SU1, SHA256SU0, SHA512SU0, SHA5125U1
3cycle: SHA256SU1, SHA512H, SHA512H2
5 cycle: SHALC, SHA1M, SHA1P, SHA256H, SHA256H2

Note that SHA3-related logic instructions (BCAX, EOR3, RAX1, XAR) are included
in the GENERAL class

Table A.5. GENERAL ASIMD&FP Class Details

Type Latency |Operation Types and Descriptions (Example Instruction Mnemonics)

MOVE 2 Vector register/immediate to vector register moves (without conversion), including
transpose and interleave (DUP, FMOV, INS, MOVI, MVN, MVNI, TRN1, TRN2,
UZP1,UZP2, ZIP1, ZIP2)

2-8 Table lookup with and without insert (TBL, TBX)

Note these are cracked/microcoded flow with varying latency depending on source
operand. See Section 4.4.8, "Multi-pop Instructions”.

INT 2 Simple arithmetic and logic with a single operation per destination element
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Table A.5. GENERAL ASIMD&FP Class Details (cont.)

Type Latency |Operation Types and Descriptions (Example Instruction Mnemonics)

NEG, NOT, ORN ORR, SADDL, SADDL2, SADDLP, SADDW, SADDW2, SHADD,
SHSUB, SRHADD, SSUBL, SSUBL2, SSUBW, SSUBW2, SUB, UADDL, UADDL2,
UADDLP, UADDW, UADDW2, UHADD, UHSUB, URHADD, USUBL, USUBL2, USUBW,
USUBW2 )

Simple shifts, shifts and inserts, bit selection, bit count, reversals, simple extract
and narrow (BIF, BIT, BSL, CLS, CLZ, CNT, EXT, RBIT, REV16, REV32,
REV64, SHL, SHLL, SHLL2, SLI, SQSHL, SQSHLU, SRI, SSHL, SSHLL,
SSHLL2, SSHR, REV64, UQSHL, USHL, USHLL, USHLL2, USHR, XTN, XTN2)

SHAS3-related logic (BCAX, EOR3, RAX1, XAR)

P:2 Arithmetic comparison with per element write (CMEQ, CMGE, CMGT, CMHI, CMHS,
CMLE, CMLT, CMHI, SMAX, SMAXP, SMIN, SMINP, UMAX, UMAXP, UMIN,

E:3 UMINP)

3 Complex operations such as absolute value and absolute difference including

lengthen (ABS, SABD, SABDL, SABDL2, UABD, UABDL, UABDL2)

Multiplies, multiply+accumulates, dot products, polynomial multiplies (MLA,

MLS, MUL, PMUL, PMULL, PMULL2, SDOT, SUDOT, SMLAL, SMLAL?2,

SMLSL, SMLSL2, SMMLA, SMULL, SMULL2, SODMLAL, SODMLAL2, SQDMLSL,
SQDMLSL2, SQDMULL, SQDMULL2, SQDMULH, SQRDMULH, SQRDMLAH,
SQRDMLSH, UDOT, UMLAL, UMLALZ2, UMLSL, UMLSL2, UMMLA, UMULL,
UMULL2, USDOT, USMMLA)

Horizontals (ADDV, SADDLV, SMAXV, SMINV, UADDLV, UMAXV, UMINV)

Simple + saturating (SQADD, SQABS, SQNEG, SQSUB, SUQADD, USQADD,
UQADD, UQSUB)

Simple + rounding (SQRSHL, SRSHL, SRSHR, UQRSHL, URSHL, URSHR)

Simple + accumulate (SABA, SABAL, SABAL2, SADALP, SRSRA, SSRA, UABA,
UABAL, UABAL2, UADALP, URSRA, USRA)

P:3 Simple + narrowing (ADDHN, ADDHN2, RADDHN, RADDHN2, RSHRN, RSHRN2,
E:- 4 RSUBHN, RSUBHN2, SHRN, SHRN2, SORSHRN, SQRSHRN2, SQRSHRUN,
SQRSHRUN2, SQSHRN, SQSHRN2, SQSHRUN, SQSHRUN2, SQXTN, SQXTN2,
SQXTUN, SQXTUN2, SUBHN, SUBHN2, UQRSHRN, UQRSHRN2, UQSHRN,
UQSHRN2, UQXTN, UQXTN2)

FP/BF16 2 Comparisons, 2-operand comparison-based operations, negation (FABS, FACGE,
FACGT, FCMEQ, FCMGE, FCMGT, FCMLE, FCMLT, FMAX, FMAXP, FMAXNM,
FMAXNMP, FMIN, FMINP, FMINNM, FMINNMP, FNEG) Note: comparisons and
comparison-based operations that involve the flags are in a separate class

3 Full vector horizontal min-max (FMAXV, FMAXNMV, FMINV, FMINNMV)
Full arithmetic (FABD, FADD, FADDP, FCADD, FSUB)

4 Multiplies and multiply+adds/accumulates (BFMLALB, BFMLALT, FCMLA, FMADD,
FMLA, FMLAL, FMLAL2, FMLSL, FMLSL2, FMLS, FMSUB, FMUL, FMULX,
FNMADD, FNMSUB, FNMUL, FRECPS, FRSQRTS)

P:10 Brain floating point (bf loat16) dot product (BFDOT)

Note this is a cracked/microcoded flow. See Section 4.4.8, "Multi-pop

E:12 Instructions”.
P:13 Brain floating point (bf 1loat16) matrix multiply-accumulate (BFMMLA)
E: 16
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Table A.5. GENERAL ASIMD&FP Class Details (cont.)

Type Latency |Operation Types and Descriptions (Example Instruction Mnemonics)
Note this is a cracked/microcoded flow. See Section 4.4.8, "Multi-pop
Instructions”.
CVT 3[2] Base convert operation between integer and floating point types (BECVT,
[+4/5] BFCVTN, BFCVTN2, FCVT, FCVT (AMNPZ) (SU), FCVTL, FCVTL2, FCVTN,
[+4/3]  |FCVTN2, FCVTXN, FRINT (AIMNPXZ ), FRINT32 (X% ), FRINT64 (X2),

SCVTF, UCVTF)
[2]: Simple lengthens (FCVT, FCVTL, FCVTL2) on E core are 2 cycles.

[+4/5]: Four or five additional cycles for a MOVE2VEC operation (if the instruction
requires movement from a GPR), depending on microarchitectural condition. See
Section 4.5.1, “Movement of Data from General Purpose Registers to Vector
Registers”.

[+4/+3]: Four or three additional cycles for a MOVE2GPR operation (if the
instruction requires movement to a GPR). See MOVE2GPR in Table A.4 for details.

AESCRYPT |Various

AES Cryptography (AESD, AESE, AESIMC, AESMC):
P core: 3 cycles

E core: 5 cycles, 1 per 2 cycles

Table A.6. ASIMD&FP Execution Class Availability: P Core

Chip ASIMD&FP Execution Unit
(0] 1 2 3
M1 Generation GENERAL GENERAL GENERAL GENERAL
M2 Generation MOVE2GPR MOVE2GPR
A14 Bionic FCMPf FCSELf
FCSELf
A15 Bionic FDIV
A16 Bionic SHA
M3 Generation GENERAL GENERAL GENERAL GENERAL
MOVE2GPR MOVE2GPR
FCMPf FCMPf
FCSELf FCSELf
FDIV
SHA

Table A.7. ASIMD&FP Execution Class Availability: E Core

159

Chip ASIMD&FP Execution Unit
(0] 1 2

M1 Generation GENERAL GENERAL
M2 Generation MOVE2GPR FCSELf
M3/M3 Pro FCMPf
A14 Bionic FCSELf
A15 Bionic FDIV
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Table A.7. ASIMD&FP Execution Class Availability: E Core

Chip ASIMD&FP Execution Unit
0 1 2
A16 Bionic SHA
M3 Max GENERAL GENERAL GENERAL
MOVE2GPR FCMPf
FCMPf FCSELf
FCSELf
FDIV
SHA

Load and Store Execution Units

The cores feature several load and store execution units capable of simultaneous issue.
Store Jops are executed in 2 parts: one that computes the address to be stored and one
that obtains the data to be stored. When both parts of a store are complete and ordering
rules satisfied, the Load and Store Execution Unit writes the data into the cache.

Load Latency

Load pops that hit in the data cache normally execute with a 4-cycle latency.

Some integer-load instructions require an additional arithmetic pop to complete in order
to update addresses for pre- and post-indexing. See Section 2.8, "Addressing Forms,
Instruction Immediates, and Operand Shifts”, Section 4.6.1, “Address Generation”, and
Section 4.4.8, "Multi-pop Instructions” for more details.

Table A.8. Integer Load Latencies

Load Type Latency of |[Example Instruction Mnemonics
Destination
Data
Operand(s)
Load (all sizes) 4 LDAR, LDARB, LDARH, LDAPUR, LDAPURB, LDAPURH,

LDAPURSB, LDAPURSH, LDAXR, LDAXRB, LDAXRH, LDAPR,
LDAPRB, LDAPRH, LDR, LDRB, LDRH, LDRSB, LDRSH, LDRSW,
LDUR, LDURB, LDURH, LDURSB, LDURSH, LDURSW, LDTR,
LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, LDXR, LDXRB,
LDXRH

Load Pair (all sizes) 4 LDAXP, LDNP, LDP, LDPSW, LDXP

Some vector load instructions require several pops to complete, and may include
combinations of:

* arithmetic pops to compute addresses and/or update addresses for pre- and post-
indexing

* load pops for multiple elements
* shuffle pops to fill specific elements
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Store Latency

See Section 2.8, "Addressing Forms, Instruction Immediates, and Operand Shifts”,
Section 4.6.1, “Address Generation”, and Section 4.4.8, “Multi-pop Instructions” for
more details.

Some instructions use a microcode sequence that consists of more loads than available
load execution units, or similarly more shuffles than available shuffle execution unit
resources. Because, for example, the P core only contains 3 load execution units, a
sequence that requires 4 load pops will have at least 1 pop execute later than the others.
The latencies listed below don't account for any delays after becoming ready due to
resource over-subscription or contention with other instructions. However sequences
that require more than the 3 loads or 4 shuffles available on the P core are marked with
*. E core over-subscription (not shown) is more significant due to fewer load and shuffle
execution resources.

Table A.9. Vector Load Latencies

Load Type Latency of |(Instruction Mnemonics with Additional Details
Destination
Data
Operand(s)
Load and Load Pair (all (4 LDR, LDUR, LDP, LDNP (see noteon 1sl/extend #4in
sizes) Section 4.4.8, “Multi-pop Instructions”)
Load 1 Element 4t LD1
Structure tResource over-subscription when using 4 register destinations
Load {2, 3, 4} Element |6 ILD{2,3,4}
Structure
Load {1, 2, 3, 4} 6/2t ID{1,2,3,4} {vd, ...}[x] 6 cyclesthrough the load path,
Element Structure to 1 2 cycles for the pass-through data in Vd* operands
Lane tResource over-subscription for Load 4 Element Structure to 1 Lane
when using 128b destination registers
Load {1, 2, 3, 6 LD{1,2,3,4}R
4} Element Structure
Replicated

Store Latency

Store operations do not have a destination register and therefore no destination register
latency. Depending on the complexity of the store operation, the instruction may
require additional uops for address computation, element shuffling, storing to multiple
addresses, and updating pointers, all similar to their load counterparts.

Table A.10. Integer Store Latencies

Store Type Latency of |[Example Instruction Mnemonics
Destination
Data
Operand(s)
Store (all sizes) N/A STLR, STLRB, STLRH, STLUR, STLURB, STLURH, STR, STRB,
STRH, STUR, STURB, STURH, STTR, STTRB, STTRH
Store Exclusive (all 4 STXR, STXRB, STXRH, STLXR, STLXRB, STLXRH
sizes)
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Table A.10. Integer Store Latencies (cont.)

Store Type Latency of |[Example Instruction Mnemonics
Destination
Data
Operand(s)

Store Pair (all sizes) N/A STP, STNP,

Store Pair Exclusive (all |4 STXP, STLXP

sizes)

While the nominal latency for the returned status value of a store exclusive instruction is
4 cycles, execution of the store may be delayed due to ordering requirements.

Atomic Instructions

The Arm ISA contains a number of instructions that execute an entire atomic
synchronization operation in a single instruction. Latency can vary significantly
depending on the amount of time it takes for the load-and-store exclusive operation
pairs that are at the core of these instructions to complete, especially if the memory
addresses are being accessed by many processors simultaneously. Despite these
instructions being comprised of several pops, the load and store jops are guaranteed to
execute atomically by the core. That is, once ordering requirements have been met and
the core possesses the cacheline, the load and store will complete prior to the line being
sent to another core.

The compare-and-swap (cas) operations load the memory contents at the target
address and then conditionally store a new value to memory location only if the memory
value is equal to the old contents of the destination register.

The swap operations (swp) load in the current memory contents at the target address
and then store a new value to the same memory location from a register, swapping the
memory and register contents.

The load-and-{operation} instructions, such as L.bsMAX, load in the memory contents

at the target address to a register, combine this value with the contents of a second
register using one of a variety of integer operations, and then store the result back to the
same location in memory.

The store-and-{operation} instructions are just load-and-{operation} instructions that
discard the value loaded from memory instead of keeping it around in a register
afterwards.

While these instruction could wait to execute for the input data register(s) to be ready,
the instruction latency is typically through the load operation and input address register.
The latencies in Table A.11 express this likelihood and reflect the latency after the
ordering requirements have been met and assuming a L1D Cache hit.
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Table A.11. Synchronization Instruction Latencies

Compare-and-Swap Pair

Swap

Load-and-{Operation}

Operation Type Latency to |Example Instruction Mnemonics

(Each have optional gesylrtlatlon

acquire and release egister

semantics)

Compare-and-Swap 4 CAS, CASA, CASAB, CASAH, CASAL, CASALB, CASALH, CASB,

CASH, CASL, CASLB, CASLH

CASP, CASPA, CASPL, CASPAL

SWP, SWPB, SWPH, SWPA, SWPAB, SWPAH, SWPL, SWPLB,
SWPLH,SWPAL, SWPALB, SWPALH

LDADD, LDADDB, LDADDH, LDCLR, LDCLRB, LDCLRH, LDEOR,
LDEORB, LDEORH, LDSET, LDSETB, LDSETH, LDSMAX,
LDSMAXB, LDSMAXH, LDSMIN, LDSMINB, LDSMINH, LDUMAY,
LDUMAXB, LDUMAXH, LDUMIN, LDUMINB, LDUMINH

LDADDA, LDADDAB, LDADDAH, LDCLRA, LDCLRAB, LDCLRAH,
LDEORA, LDEORAB, LDEORAH, LDSETA,LDSETAB, LDSETAH,
LDSMAXA, LDSMAXAB, LDSMAXAH, LDSMINA, LDSMINAB,
LDSMINAH, LDUMAXA, LDUMAXAB, LDUMAXAH, LDUMINA,
LDUMINAB, LDUMINAH

LDADDL, LDADDLB, LDADDLH, LDCLRL, LDCLRLB, LDCLRLH,
LDEORL, LDEORLB, LDEORLH, LDSETL, LDSETLB, LDSETLH,
LDSMAXL, LDSMAXLB, LDSMAXLH, LDSMINL, LDSMINLB,
LDSMINLH, LDUMAXL, LDUMAXLB, LDUMAXLH, LDUMINL,
LDUMINLB, LDUMINLH

LDADDAL, LDADDALB, LDADDALH, LDCLRAL, LDCLRALB
LDCLRALH, LDEORAL, LDEORALB, LDEORALH, LDSETAL,
LDSETALB, LDSETALH, LDSMAXAL, LDSMAXALB
LDSMAXALH, LDSMINAL, LDSMINALB, LDSMINALH
LDUMAXAL, LDUMAXALB, LDUMAXALH, LDUMINAL,
LDUMINALB, LDUMINALH

Store-and-{Operation} N/A

STADD, STADDB, STADDH, STCLR, STCLRB, STCLRH, STEOR,
STEORB, STEORH, STSET, STSETB, STSETH, STSMAX,
STSMAXB, STSMAXH, STSMIN, STSMINB, STSMINH, STUMAX,
STUMAXB, STUMAXH, STUMIN, STUMINB, STUMINH

STADDA, STADDAB, STADDAH, STCLRA, STCLRAB, STCLRAH,
STEORA, STEORAB, STEORAH, STSETA, STSETAB, STSETAH,
STSMAXA, STSMAXAB, STSMAXAH, STSMINA, STSMINAB,
STSMINAH, STUMAXA, STUMAXAB, STUMAXAH, STUMINA,
STUMINAB, STUMINAH

STADDL, STADDLB, STADDLH, STCLRL, STCLRLB, STCLRLH
STEORL, STEORLB, STEORLH, STSETL, STSETLB, STSETLH
STSMAXL, STSMAXLB, STSMAXLH, STSMINL, STSMINLB
STSMINLH, STUMAXL, STUMAXLB, STUMAXLH, STUMINL,
STUMINLB, STUMINLH

STADDAL, STADDALB, STADDALH, STCLRAL, STCLRALB
STCLRALH, STEORAL, STEORALB, STEORALH, STSETAL,
STSETALB, STSETALH, STSMAXAL, STSMAXALB,
STSMAXALH, STSMINAL, STSMINALB, STSMINALH
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Table A.11. Synchronization Instruction Latencies (cont.)

Operation Type Latency to |Example Instruction Mnemonics
Destination

Each h ti | .
(Each have optiona Register

acquire and release
semantics)

STUMAXAL, STUMAXALB, STUMAXALH, STUMINAL,
STUMINALB, STUMINALH

Recommendation: Use Single Instruction Atomics to Improve
Multiprocessor Performance:

[Magnitude: Low | Applicability: Low] Single instruction atomics execute the
load and store as an atomic unit, that is, the core will not lose the cacheline in
between the load and store.

A.3.4 Load and Store Execution Unit Bandwidth

Loads and stores execute on multiple execution ports. As noted, store pops are
executed in 2 parts, one that computes the address to be stored and one that obtains
the data to be stored.

MOVE2VEC instructions that move data from the GPRs to the Vector

registers (DUP (general), FMOV(general), INS(general), MOV(from general),
SCVTF(scalar), UCVTF (scalar)) consume load issue slots. The movement portion
of these instructions has a latency of 4 cycles. See Section 4.5.1, “Movement of Data
from General Purpose Registers to Vector Registers”.

Table A.12. Memory Execution Unit Bandwidth: P Core

Chip Bandwidth
Load or Store pop  (Store pop  |Combined limits
MOVE2VEC (address
Hop part) (data part) |per cycle
M1 Generation and A14 Bionic |3 2 2 Burst: 3 load pops, 2 store
M2 Generation and A15 Bionic Hops (address part), and 2

store pops (data part)
Sustained: 4 pops
Sustained: 2 writes into the

M3 Generation and A16 Bionic

cache
Table A.13. Memory Execution Unit Bandwidth: E Core
Chip Bandwidth
Load or Store pop  (Store pop  |Combined limits
MOVE2VEC (address
pop part) (data part) |percycle
M1 Generation and A14 Bionic |2 2 2 Burst: 2 load uops, or 2
M2 Generation and A15 Bionic store pops (address part),
or 1 of each, along with 2
M3 Generation and A16 Bionic store pops (data part)
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A.3.5

Table A.13. Memory Execution Unit Bandwidth: E Core (cont.)

Chip Bandwidth
Load or Store pop  (Store pop  |Combined limits
MOVE2VEC (address dat R I
pop part) (data part) |percycle

Sustained: 2 pops

Sustained: 1 write into the
cache

The following instructions serialize the Memory Execution Units according to their
conditions: DMB, DSB, PSSBB, SSBB.

Memory Hierarchy Access Latencies

Table A.14 lists typical unloaded access latencies for cache lines stored in different
locations for M1. There are many factors that can slow an individual access, including
but not limited to queuing delays due to other accesses/traffic and clock frequency
differences. Generationally, larger caches are typically slower to access, and thus typical
access latency may increase by a few cycles accordingly. This is most pertinent when
considering the Own Shared L2 Cache latency, where a few additional cycles may
represent a non-negligible percentage increase. Similarly, the CPUs in A Series chips
may see a slightly faster Own Shared L2 Cache latency compared with the CPUs in M
Series chips due to the smaller cache sizes. Use this table to comprehend "ballpark"
latencies when analyzing algorithms, especially when evaluating how working sets
interact with various caches and when analyzing multithreaded shared variable access
patterns.

Table A.14. Cache and Memory Access Latencies

Cache/Memory Level Typical M1 Unloaded Latency

Own L1 Cache 4 cycles (See Section A.3, “Load and Store
Execution Units")

Own Shared L2 Cache ~15 cycles

Other Cluster Shared L2 Cache ~50 ns

Memory Cache ~35ns

Main Memory ~95ns
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Appendix B. Dynamic Determination of Chip-
Specific Capabilities

Some software may depend on knowledge of specific system details or hardware
configurations. For example, software may want adapt to the following:

* Execute specific code paths when certain instructions are available
* Spawn different numbers of worker threads depending on the core count
* Apply cache blocking techniques to large data sets based on the cache configuration.

Software that contains hardcoded assumptions (that is, use a predetermined constant
that cannot be changed without recompiling the code) about the existence or value

of a parameter may not work as expected on systems where the existence or value is
different. Instead of hardcoding values related to the underlying system, fetch those
values dynamically from system global variables.

System parameters can be obtained both via a commandline tool sysctl and software
function sysctlbyname().

Some example parameters further described in subsequent sections:

* Virtual memory page size: hw.pagesize

* System cacheline size: hw.cachelinesize

* Number of physical general purpose cores in the chip: hw.physicalcpu max

* Arm-specific ISA feature, such as Dot Product: hw.optional.arm.FEAT DotProd

For a complete list of available parameters on a particular chip, run the command
sysctl —a command in Terminal. Subsets can be selected, such as hw, kern, user, or
machdep.

int sysctlbyname(const char *name, void *oldp, size t *oldlenp, void
*newp, size t newlen) reads a parameter name and stores the parameter's value

in *oldp. On an error, sysctlbyname() returns -1 and populates errno with additional
information such as ENOENT when the parameter does not exist. Ensure that the memory
region pointed to by oldp is of sufficient size. Check the parameter's datatype using
sysctl -d <param>. sysctlbyname() Will generate an errno of ENOMEM when the
memory region is too small.

For instance, to programmatically determine when a process is running under Rosetta
translation, call the sysctlbyname () function with sysctl.proc_ translated flag, as
shown in the following example. The processIsTranslated() function returns the
value o0 for a native process or 1 for a translated process based on the value stored in
*oldp. The processIsTranslated() function returns -1 when an error occurs, such as
the parameter does not exist, based on the return value of sysctlbyname().

int processIsTranslated() {
int ret = 0;
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size_t size = sizeof(ret);
if (sysctlbyname("sysctl.proc_translated", &ret, &size, NULL, 0) == -1) {

return -1;

}

return ret;

For additional context, see "Addressing Architectural Differences in Your macOS code".

Recommendation: Query sysct1 Parameters for Determining ISA Feature
Support and Microarchitectural Characteristics:

[Magnitude: High | Applicability: Low] When using specific ISA instructions
not present on all target processors, use the sysct1 functionality to determine
availability of the feature, branching to alternate code when not available. When
optimizing for specific microarchitectural characteristics such as L1 cache size,
leverage sysctl to determine those characteristics.

B.1 ISA Features

The sysctl interface contains parameters that describe the ISA capabilities of the
processor.

Apple silicon chips support the Arm A-Profile 64b AARCH64 v8 instruction set.
Although software is compiled for a specific base instruction set and dynamically
checking it is generally unnecessary, software can test for the Arm ISA using the
following parameter:

Table B.1. Supported Base Instruction Set Parameter

Feature
Parameter name hw.optional.<parameter> Description
armé64 Arm A-Profile 64b AARCHG64 v8

Apple silicon chips support several Arm features without official Arm "FEAT *" names.
While parameters exist to identify these features, they are present in all Apple silicon
chips beginning with M1 and A14 Bionic and do not need to be dynamically checked.

Table B.2. Supported Arm v8 Unofficially Named ELO Feature Parameters

Feature

Parameter name hw.optional.<parameter> Description

armv8 crc32 CRC32 instructions

floatingpoint General support for floating-point instructions

AdvSIMD General support for Advanced SIMD instructions

AdvSIMD HPFPCvt Advanced SIMD half-precision conversion
instructions

Support for Arm features with standard names can be
checked using hw.optional.arm.<parameter>, such as Dot Product:
hw.optional.arm.FEAT DotProd. Available features will have a parameter value of 1.
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B.2

Unavailable features will have a parameter value of 0. Unimplemented features will
return an error (ENOENT).

For the full list of implemented ISA feature names, see Section 2.2, "Arm AARCHG4 ISA”.

Some Arm features also have legacy parameter names created prior to standardization.
Legacy parameters will continue to exist to support existing software. However, use the
new standardized names whenever possible.

Table B.3. Legacy Feature sysct1l Parameter Names

Legacy Parameter New Parameter
hw.optional.neon (The term "NEON" is no hw.optional.AdvSIMD

longer broadly used by Arm. See Chapter 3, ISA

Optimization: Advanced SIMD and FP Unit.)

hw.optional.neon_ hpfp hw.optional.AdvSIMD HPFPCvt
hw.optional.neon fpl6 hw.optional.arm.FEAT FP16
hw.optional.armv8 1 atomics hw.optional.arm.FEAT LSE
hw.optional.armv8 2 fhm hw.optional.arm.FEAT FHM
hw.optional.armv8 2 sha512 hw.optional.arm.FEAT SHA512
hw.optional.armv8 2 sha3 hw.optional.arm.FEAT SHA3
hw.optional.armv8 3 compnum hw.optional.arm.FEAT FCMA

These sysct1 feature parameters are also
documented at https://developer.apple.com/documentation/kernel/1387446-
sysctlbyname/determining_instruction_set_characteristics.

Cache and Topology Characteristics

The sysctl interface contains parameters that describe cache organization and
topology. Software can query the interface to determine the configuration and adapt
the workload accordingly, such as to block a data set for a particular cache size. The
cache topology parameters do not include the M Cache, and as noted, software should
not optimize for its capacity.

Table B.4: "Per Performance Level Sysctl Parameters” lists parameters that clearly
define the system topology and include an example of M1 Ultra. The parameters include
a hierarchy level called perflevel {N} that specify parameters by core type. Higher
performing cores have lower perflevels. On M1 Ultra, the P core parameters are located
under perflevel0 and the E core parameters are located under perflevell. These
parameters are available in macOS 12, iOS 15, iPadOS 15, and later.

Table B.4. Per Performance Level Sysctl Parameters

New Per Performance Level Parameters Definition M1 Ultra Values

perflevelO |perflevell

P core E core

hw.nperflevels Number of types of general 2

purpose cores in the chip. The
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Table B.4. Per Performance Level Sysctl Parameters

number of physical cores in the
chip

New Per Performance Level Parameters Definition M1 Ultra Values
perflevelO |perflevell
P core E core
lower the perflevel, the higher the
performance of the core type
hw.perflevel {N}.cpusperl2 For cores of perflevel N, the 4 2
number of cores that share a L2
Cache
hw.perflevel{N}.cpusperl3 For cores of perflevel N, the N/A
number of cores that share a L3
Cache
hw.perflevel{N}.lldcachesize For cores of perflevel N, the size in|131072 65536
bytes of the L1 Data Cache
hw.perflevel{N}.llicachesize For cores of perflevel N, the size in 196608 131072
bytes of the L1 Instruction Cache
hw.perflevel{N}.1l2cachesize For cores of perflevel N, the size in[12582912 (4194304
bytes of the L2 Cache
hw.perflevel{N}.l3cachesize For cores of perflevel N, the size in [N/A
bytes of the L3 Cache
hw.perflevel{N}.logicalcpu For cores of perflevel N, the 16 4
number of enabled logical cores in
the chip
hw.perflevel{N}.logicalcpu max |For cores of perflevel N, the 16 4
number of logical cores in the chip
hw.perflevel{N}.physicalcpu For cores of perflevel N, the 16 4
number of enabled physical cores
in the chip
hw.perflevel{N}.physicalcpu max |For cores of perflevel N, the 16 4

Table B.5: "Updated Existing Sysctl Parameters” lists the legacy cache and topology
parameter names and includes an example of M1 Ultra. The definitions of the cache
parameters have been updated to reflect the lowest performing cores in the system
beginning with macOS 12, iOS 15, and iPadOS 15. Prior versions of the operating
systems reported values based on the boot core, which may have been either a P core
or an E core, depending on the particular device.

Table B.5. Updated Existing Sysctl Parameters

Existing Parameters

Updated Definition (where

applicable, applies to the Jowest
performing cores in the system)

M1 Ultra Values

hw.lldcachesize Size in bytes of the L1 Data Cache 65536

hw.llicachesize Size in bytes of the L1 Instruction 131072
Cache

hw.l2cachesize Size in bytes of the L2 Cache 4194304

hw.l3cachesize Size in bytes of the L3 Cache N/A
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Table B.5. Updated Existing Sysctl Parameters (cont.)

Existing Parameters Updated Definition (where M1 Ultra Values
applicable, applies to the lowest
performing cores in the system)

hw.cachelinesize Size in bytes of the system cache line {128

hw.memsize Size in bytes of DRAM <Various>

hw.pagesize Size in bytes of a virtual memory page|16384

hw.activecpu The number of enabled logical 20
processor cores in the chip (alias of
hw.logicalcpu)

hw.ncpu The number of logical processor 20

cores in the chip (alias of
hw.logicalcpu max)

hw.logicalcpu The number of enabled logical 20
processor cores in the chip (alias of
hw.activecpu)

hw.logicalcpu max The number of logical processor 20
cores in the chip (alias of hw.ncpu)

hw.physicalcpu The number of enabled physical 20
processor cores in the chip

hw.physicalcpu max The number of physical processor 20
cores in the chip

These sysctl cache and topology parameters are
also documented at https://developer.apple.com/documentation/kernel/1387446-
sysctlbyname/determining_system_capabilities/.
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